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 Background and Objectives: High resolution multi-spectral (HRMS) images 
are essential for most of the practical remote sensing applications. Pan-
sharpening is an effective mechanism to produce HRMS image by 
integrating the significant structural details of panchromatic (PAN) image 
and rich spectral features of multi-spectral (MS) images. 
Methods: The traditional pan-sharpening methods incur disadvantages 
like spectral distortion, spatial artifacts and lack of details preservation in 
the fused image. The pan-sharpening approach proposed in this paper is 
based on integrating wavelet decomposition and convolutional sparse 
representation (CSR). The wavelet decomposition is performed on PAN 
and MS images to obtain low-frequency and high-frequency bands. The 
low-frequency bands are fused by exploring the CSR based activity level 
measurement. 
Results: The HRMS image is restored by implementing the inverse 
transform on fused bands. The fusion rules are constructed, thus to 
transfer the crucial details from source images to the fused image 
effectively. 
Conclusion: The proposed method produces HRMS images with rational 
spatial and spectral qualities. The visual outcomes and quantitative 
measures approve the eminence of the proposed fusion framework.  
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Introduction 
Due to technological constraints and physical limitations, 

the remote sensing sensors produce the images with a 

striking trade-off between spatial and spectral 

resolutions. Most of the high-resolution optical sensors 

such as IKONOS, Pleiades, and WorldView-3 usually 

produce a panchromatic (PAN) image with low spectral 

resolution/high spatial resolution and a multi-spectral 

(MS) image composed of several bands, with low spatial 

resolution/high spectral resolution [1]. The MS and PAN 

images are acquired simultaneously over the same 

geographical terrain i.e., the two images represent the 

same scene. 

The High-resolution MS (HRMS) images with superior 

resolution features in both spatial and spectral domains 

are most desirable in applications like hazard 

monitoring, land-cover and land-use classification, and 

environmental change detection [2]. Pan-sharpening (PS) 

is a significant section of multi sensor data fusion, aims 

to generate a HRMS image that is more suitable for 

human and machine perception than the individual input 

images. The objective of a PS mechanism is to produce a 

HRMS image, inheriting the spatial quality of the PAN 

image and maintaining the spectral richness of the MS 

image. Let Xk, k = 1, 2, ...,N be the MS image with N 

number of bands and Y be the PAN image. The MS image 
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upsampled to the size of the PAN image is denoted as  ̃  

and  ̂  represents the estimated HRMS image. The 

pansharpened image is obtained by adding a spatial 

detail image, D, to the up-sampled image,  ̃  , as below. 

 ̂   ̃                                                          (1) 

The dimension of D is the same as that of up-sampled 

MS and pansharpened images. However, the CS and 

MRA methods mainly differ in the synthesis process by 

which the spatial detail image, D is estimated. The 

spatial detail image, D is crucial in deciding the quality of 

the fused image. In Eq.(1),      ,             - is a 

vector of injection gains, which are band-specific. For CS 

based methods, the detail image is expressed as, 

    ∑     ̃ 
 
                                                              (2) 

The selection of parameters like injection gains (  ) 

and the weight vector (  ) are determined by the 

specific CS algorithm. The weight vector,    specifies the 

proportion in which each band has to be preferred for 

the weighted sum of MS bands. The difference between 

the PAN image and the weighted sum of MS bands is 

proportional to spectral distortion in the fused image. 

The familiar CS based methods are intensity-hue-

saturation (IHS) [3], principal component analysis (PCA) 

[4] and Gram-Schmidt transform (GS) [5]. As a 

modification to existing CS based methods, a novel 

gradient transferring method is proposed which 

significantly reduces the spectral distortion [6].  

For MRA based methods, the spatial detail image is 

constructed as: 

                                                                                  (3) 

where, the variant YL contains the low-pass details of 

the PAN image Y. The particular MRA algorithm 

determines the type of the filter used to determine YL 

and the injection gain vector   . The reputable MRA 

methods are based on wavelets [7], atrous wavelet 

transform (ATWT) [8], additive wavelet luminance 

proportional (AWLP) [9], fourier transform weighted red-

black wavelets [10], modulation transfer function- 

generalized lapalician pyramid (MTF-GLP) [11]. The CS 

methods preserve the requisite spatial details; however, 

they induce distortion in spectral information of the final 

outcome. The first sparse representation (SR) based pan-

sharpening method was proposed by Li and Yang [12], 

and the problem of PS is treated as a restoration 

process. In this method, the fused images patches are 

assumed to be sparse over a dictionary that is 

constructed by extracting random patches from HRMS 

images. To achieve adequate fusion quality, the required 

size and process of the dictionary construction lead to 

extensive computational cost. Furthermore, the HRMS 

image patches may not be available. The pan-sharpening 

methods can be grouped into two categories: (i) The 

dictionary constructed by the patches extracted from 

both the PAN and MS images [13]. (ii) The dictionary 

constructed by the patches of low resolution image [14]. 

Unlike the aforementioned PS methods, dictionaries 

constructed from low and high frequency components of 

MS image by random sampling is proposed in [15]. In 

this research, a three steps SR-based pansharpening 

method was proposed. In the first step, they constructed 

the high frequency and low frequency dictionaries with 

the spectral information of MS images so that the 

reconstructed MS image could achieve the best fidelity 

effect or decrease the spectral distortion of the 

sharpening result. Then, PAN image was decomposed 

into high-frequency component (HFC) and low- 

frequency component (LFC) by the high frequency (HF) 

and low frequency dictionaries. Hence, the HFC of PAN 

image could fit the spatial detail and spectral features of 

MS image. Finally, the MS image and the HFC of PAN 

image have been merged to reconstruct the MS image. 

Moreover, a single dictionary learned from HRMS images 

is exploited for SR based pan-sharpening [16]. The pan-

sharpening paradigms based on multi-scale 

decomposition combined with the SR are effective in 

terms of spatial and spectral quality trade-off and 

computational complexity [17]. To reduce the spatial and 

spectral distortions effectively, the PS paradigm is 

formulated based on particle swarm optimization 

combined with the signal decomposition [18]. The sparse 

representation based methods are likely to yield 

improved performance over the conventional and 

model-based PS methods. However, the SR based pan-

sharpening methods usually follow a patch-partition 

based approach, and the processing of patches on an 

individual basis overlooks the consistency constraint. 

While reconstructing images the averaging mechanism is 

deployed on overlapped patches, which results in loss of 

spatial structure of the image. Sparse representation 

performed on overlapped patches results in multi-valued 

representation (because of the processing of overlapped 

patches, the representation yields different values for a 

specific feature present in the original image), which is 

not optimal over the entire image. To address these 

issues in existing pan-sharpening methods, a newly 

developed signal decomposition scheme, known as 

convolutional sparse representation (CSR) is adapted. 

CSR mechanism models the entire image rather than 

repeatedly considering individual patches, which enables 

preservance of spatial structure and lead to a single-

valued representation [19]. The CSR based fusion rule is 

applied to the bands in the transform domain rather in 

the imaging domain. The fusion rules implemented are 

pertinent to the wavelet coefficients. 

To overcome the problems of traditional PS 
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approaches, this paper presents an efficient pan-

sharpening (PS) method by taking the complementary 

advantages of multi-scale decomposition, particularly 

the discrete wavelet transforms (DWT) and CSR [20]. In 

the proposed method, the source images are 

decomposed into low and high-frequency bands using 

wavelet transform. The shift-invariance feature can be 

attained by exploring the CSR, which is crucial for image 

fusion. The conventional ’max-absolute’ and ’direct 

averaging’ fusion rules result in low-contrast regions in 

the fused image. The high-frequency bands are fused 

based on the relative wavelet energy estimated over a 

specified region. The experimental results validate that 

the fusion rules exploited in the proposed work 

successfully transfer the pertinent features from source 

images to the fused image. Section 2 details the 

proposed pan-sharpening approach. The experiments 

result and detailed analysis are given in Section 3. 

Section 4 concludes the paper. 

Proposed method 

This section illustrates the proposed pan-sharpening 

scheme using the integration of wavelet transform and 

convolutional sparse representation. The low-resolution 

MS (LRMS) image, X is interpolated to the size of PAN 

image and represented as  ̃ . The first two moments of 

PAN image, Y, and the up-sampled LRMS image,  ̃ , are 

used to produce corresponding pan image Yk. For each 

band, i.e., k=1, 2 .... N.; the proposed pan-sharpening 

framework is described in Fig. 1. To overcome the 

customary disadvantages in pan-sharpening methods, 

the CSR is adapted into fusion rules in the transform 

domain. 

A.  Convolutional sparse representation 

Sparse representation is a widely used technique for a 
very broad range of signal and image processing 
applications. Given a signal s and a dictionary matrix D, 
sparse coding is the inverse problem of finding the 
sparse representation x with only a few non-zero entries 
such that     . Most sparse coding algorithms 
optimize a functional consisting of a data fidelity term 
and a sparsity inducing penalty: 

       
 

 
‖    ‖ 

    ( )                                        (4) 

where  ( ) denotes a sparsity inducing function. 
If the dictionary D is analytically defined and 

corresponds to a linear operator with a fast transform 

(e.g. the Discrete Wavelet Transform), a representation 

for an entire signal or image can easily be computed. 

More recently, however, it has been realised that 

improved performance can be obtained by learning the 

dictionary from a set of training data relevant to a 

specific problem; this inverse problem is known as 

dictionary learning. In this case computing a sparse 

representation for an entire signal is not feasible, the 

usual approach being to apply the decomposition 

independently to a set of overlapping blocks covering 

the signal [21]. 

The convolutional form of representation originated 

as a hypothesis of modifying the convolutional neural 

networks by [22]. The convolutional sparse 

representation is treated as an alternative 

representation of SR, produce a convolutional 

decomposition of an entire image subjected to a sparsity 

constraint. The main objective of CSR is to model an 

image as a sum over a set of convolutions of unknown 

coefficient maps *  +, with their corresponding 

dictionary filters *  +. By regularizing    with sparsity 

prior, the entire image S is modeled using CSR as: 

      *  +
 

 
‖       ‖ 

   ∑ ‖  ‖     

        

                                                                                                 (5) 

where,   is a regularization parameter (a scalar) that 

controls balance between sparsity and reconstruction 

error, while the symbol ‘*’ represents convolution 

operation. M denotes the number of dictionary filters. 

The dictionary filters are learned using finite number of 

training images as 

      *  +*  +
 

 
‖        ‖ 

  

 ∑ ‖  ‖    ‖  ‖                                                      (6) 

where,    denote the training images used to learn 

dictionary filters.  

The learned dictionary filters yield less redundancy and 

the coefficient maps,   , preserves the essential spatial 

structures in the fused images. The CSR model is given in 

Eq. (6) can be regarded as a convolutional form of well-

known basis pursuit problem and termed as CBPDN 

(convolutional basis pursuit denoising) [23].  

The CSR model is designed to analyze the shift-invariant 

sparse representation, which remains an essential 

property in image fusion. The redundancy generated by 

the overlapped pixels as in the case of SR based schemes 

can be eliminated with CSR by learning the dictionary 

filters from the whole image. These underlying features 

preserve the spatial structure in the fused image. In 

sparse representation scheme, the sparse coefficient 

vector,   for each of the image patch is estimated using 

an over-complete dictionary, D, as 

        ‖ ‖              ‖    ‖ 
                  (7) 

Here,   is the admissible error. 

The entire image, S, can be expressed as a dot 

product of dictionary D, and the sparse coefficient 

vectors, α corresponding to the image patches. i.e 

  ∑                  With J number of patches 
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extracted from the image S, s and   are the patch and 

coeffcients matrices respectively.  

In CSR, the image S can be expressed as convolutions 

of dictionary elements,    and each feature maps,   . 

i.e.,   ∑       . The size and number of the 

dictionary filters can be chosen arbitrarily. The size of 

the coeffcients maps,    are same as the image S, and 

the index, m is same as that of the dictionary filters,   . 

 

 
 

Fig. 1:  The Proposed Pan-sharpening Schematic. A1,A2 : Low-Frequency bands; D1,D2 : High-Frequency bands; d1,d2: detail layers; 
b1,b2: base layers; fd: fused detail layer; fb: fused base layer; fL: fused Low-Frequency band; fH: fused High-Frequency band. 

 
 

B.  Decomposition using wavelet transform 

The level of decomposition is an important factor that 

affects fusion performance. If the decomposition level is 

high, a single coefficient in the transform domain 

influences relatively a large area of the image. Hence, a 

small error in decomposed bands causes severe artifacts 

in the resultant image obtained by the inverse 

transformation. The source images,  ̃  and  ̃  are 

decomposed using wavelet transform to generate the 

corresponding low-frequency bands {  ̃     } and high-

frequency bands {  ̃     }. 

At a given scale J, a finite number of translations are 

used in applying multi-resolution analysis to obtain a 

finite number of scaling and wavelet coefficients. The 

signal can be represented in terms of these coefficients 

as below. 

 ( )  ∑       ( )  ∑ ∑       ( ) 
 
                        (8) 

where     are the scaling coefficients,     are the 

wavelet coefficients,  ( ) is low pass filter function, and 

 ( ) is high pass filter. The first term in Eq. (8) gives the 

low-resolution approximation of the signal while the 

second term gives the detailed information at 

resolutions from the original down to the current 

resolution J. At each level of decomposition, the signal is 

split into high frequency and low frequency components; 

the low frequency components can be further 

decomposed until the desired resolution is reached. 

When multiple levels of decomposition are applied, the 

process is referred to as multi-resolution decomposition. 

In practice when wavelet decomposition is used for 

image fusion, one level of decomposition can be 

sufficient, but this depends on the ratio of the spatial 

resolutions of the images being fused [24].  

Fusion of low-frequency bands CSR is an efficient 

sparse coding paradigm to represent the entire image 

rather than using the local patch processing strategy as 

below. 

      *  +
 

 
‖∑         ‖ 

   ∑ ‖  ‖                       (9) 

where,   is a regularization parameter,    is dictionary 

filters,    is the unknown sparse coefficient maps, and ’*’ 

represents convolution operator.  

Various image fusion methods have been adapted a 

composition, separating a source image into base and 

detail layers [25]. The approximate bands are further 

decomposed into its constituent base and detail layers. 

The solution of the following optimization problem 

yields the base layer,   ̃ 
 , of low-pass band {  ̃ }, 

      
 
 ̃ 

 ‖  ̃    ̃ 
 ‖

 

 
  .‖     ̃ 

 ‖
 

 
 

‖     ̃ 
 ‖

 

 
/                               (10) 
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The parameters    ,    - and    ,    -
  are 

horizontal and vertical gradient operators, respectively. 

The notion ‖ ‖  represents Frobenius norm. The 

regularization parameter   is selected as 5 for the 

proposed CSR based pan-sharpening scheme. Once, the 

base layer is determined by solving the Tikhonov 

regularization (Eq.(10)) using fast Fourier transform, the 

detail layer can be estimated as 

  ̃ 
    ̃    ̃ 

                                    (11) 

A set of dictionary filters               are 

learned from the low-frequency bands by using the 

dictionary learning algorithm. 

The sparse coefficient maps Si,m for each of the detail 

layer    {  ̃ 
     

 } are obtained by solving the CSR 

model. 

C.  Fusion of high-frequency bands 

The fusion of high frequency bands depends on the 

ingredient wavelet energy, and is defined as 

 ( )  
∑ ∑  (   ) 

 
   

 
   

     
                 (12) 

where, G(p,q) is the wavelet coefficient at the spatial 

location (p,q) and w is a local window of size P × Q. The 

fused high frequency band, Df is produced by imposing 

the following rule. 

   (   )={
  ̃ (   )    (  ̃ (   ))   (   (   ))

   (   )           
   

(13)                                                                            

where,   ̃ (   ) and    (   ) are the windows 

centered at the pixel locations (p,q) of the bands   ̃  

and     , respectively.  

Finally, the k
th

 band of HRMS image  ̂  is 

reconstructed by performing the inverse wavelet 

transform on the fused components Afk and Dfk. 

Simulation and results 

In this section, the proposed pan-sharpening method 

is validated with datasets from two satellite images 

including Pleiades and IKONOS which were acquired 

from Tehran (17 June 2010) and Kermanshah (11 

November 2017), respectively. The proposed method is 

compared with four state-of-the art methods: FIHS from 

CS category, MTF-GLP from MRA category, SR-CD from 

sparse representation, and SR-WT from multi-scale 

decomposition based methods. Four quantitative 

measures including correlation coefficient (CC), root 

mean square error (RMSE), spectral angle mapper 

(SAM), and universal image quality index (UIQI) are used 

to validate the efficacy of the proposed method. The 

execution mechanism for FIHS, SR-CD, and MTF-GLP 

methods are available online developed by [26]. For the 

implementation of the proposed method, DWT with two 

level decomposition is used for the decomposition of 

source images. The particle swarm optimization (PSO) 

method was used for optimization process. Since all 

evolutionary-based optimization methods are based on a 

random process, the PSO results varied with different 

trials.  As the PSO is a fast optimization method, it 

converged after 34 iterations, while the number of 

particles reached 100. After ten trials, the regularization 

parameter λ in CSR (Eq. (7)) is selected as 0.15 to 

maintain a balance between the computational effort 

and performance outcomes and the local window size to 

measure the wavelet energy is set as 5×5. All the 

experiments are conducted with MATLAB2013b, on a 

personal computer with CPU intel core i3 @ 3.10 GHz, 4 

GB RAM. 

A.  Experiments with Pleiades dataset 

Pleiades sensor produce a 0.5-m PAN image and a 2-

m MS image having four bands. The source images are 

filtered with 3×3 Gaussian filter and down-sampled by a 

factor four. Image size is 400*400 pixels, data 

quantization is 12 bit per pixel, and SNR for PAN and MS 

bands are 147 and 130, respectively. The source images 

and visual outcomes of eight different methods along 

with the proposed method’s outcome are presented in 

Fig. 2. The corresponding quantitative measures are 

detailed in Table 1. 
 

 
 

Fig. 2: Visual results of Pleiades data for (a) Proposed method, 
(b) FIHS, (c) MTF-GLP, (d) SR-CD, (e) SR-WT. 

(a) 

(b) (c) 

(d) (e) 
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It can be seen in Fig. 2 that, the outcomes of FIHS, 

and SR-CD are exhibiting spectral distortion and appears 

to be blurred compared with the reference image. The 

wavelet-based method, SR-WT suffers from minimal 

blocking artifacts particularly at the roofs of the 

buildings. The results of MTF-GLP, appears to have 

better visual quality. The outcome of the proposed 

method is relatively in a close match with the reference. 
 

 
Table 1: Accuracy assessment of pan-sharpening algorithms using correlation coefficient (CC), root mean square error (RMSE), 
spectral angle mapper (SAM), and universal image quality index (UIQI) and consumption time for Pleiades and IKONOS dataset 

 

Dataset Pleiades IKONOS 

Method CC RMSE SAM UIQI Time (s) CC RMSE SAM UIQI Time (s) 

FIHS 0.738 14.511 2.816 0.722 6.17 0.780 13.231 3.136 0.751 4.59 

MTF-GLP 0.768 13.912 2.717 0.741 7.35 0.814 12.832 2.505 0.794 5.68 
SR-CD 0.804 12.257 2.390 0.790 8.16 0.825 11.577 2.322 0.814 6.73 
SR-WT 0.791 14.180 2.563 0.757 4.78 0.821 12.419 2.474 0.793 3.04 
Proposed 0.804 11.555 2.323 0.793 4.31 0.828 11.503 2.355 0.825 2.37 

  

 It is obvious from the zoomed portions that, the 

proposed method better preserves the spatial structures 

and yields the minimum possible spectral distortion. 

From the quantitative measures presented in Table 1, it 

is evident that the proposed method is effective in 

maintaining the reasonable balance between the spatial 

and spectral features in the pansharpened image. 

B.  Experiments with IKONOS datasets 

The source images are 1-m PAN image and 4-m MS 

image with four bands, captured by the IKONOS sensor. 

The pan-sharpening process is executed on the original 

data set further, for comparison purpose the fused 

outcome is down-sampled to the size of the original MS 

image. The size of image is 200*200 pixels, data 

quantization is 11 bit per pixel, and SNR for both PAN 

and MS bands is 45. The visual outcomes of different 

methods used for comparison are shown in Fig. 3.  

The outcome of the FIHS method suffers from 

intensity distortion. The fusion outcome of SR-WT and 

MTF-GLP methods are unable to effectively preserve the 

spectral details. It is difficult to analyze the performance 

of SR-CD and the proposed method visually. The 

quantitative measures and the computation times for 

each method used to fuse the original images are 

presented in Table 1. The proposed method uses about 

3-5 s to generate a fused image in two dataset, which 

the time costs are acceptable related to other methods. 

The proposed method yields optimal values for CC, 

RMSE, UIQI and second-best value for SAM. It is evident 

from the three sets of results for IKONOS data, SR-CD 

and the proposed method outcomes exhibit relatively 

better performance. The comprehensive experimental 

results obtained from reduced scale and full-scale 

validation approved that the proposed framework 

effectively overcome the drawbacks of conventional SR-

CD method. The proposed method yields 1.993% 

improvement compared with the second-best results in 

spectral distortion index (SAM) for Pleiades dataset. Also 

the proposed method accomplishes optimal values for 

the overall quality measures CC and RMSE. The visual 

and quantitative results confirmed that the proposed 

method effectively preserves all the requisite details in 

the fused image. 

 

 
 

Fig. 3: Visual results of IKONOS data for Visual results of 
Pleiades data for (a) Proposed method, (b) FIHS, (c) MTF-GLP, 

(d) SR-CD, (e) SR-WT. 

(a) 

(c) (b) 

(d) (e) 



Using Convolutional Sparse Representation and Discrete Wavelet Decomposition for Satellite Image Pan-sharpening 

211 
 

It can be seen in Fig. 3 that, the outcomes of FIHS, and 
SR-CD are exhibiting spectral distortion and appears to 
be blurred compared with the reference image. The 
wavelet-based method, SR-WT suffers from minimal 
blocking artifacts particularly at the roofs of the 
buildings. The results of MTF-GLP, appears to have 
better visual quality. The outcome of the proposed 
method is relatively in a close match with the reference 
MS image. It is obvious from the zoomed portions that, 
the proposed method better preserves the spatial 
structures and yields the minimum possible spectral 
distortion.  

Conclusion 

This paper presents an effective remote sensing 

image fusion mechanism based on wavelet 

decomposition and convolutional sparse representation. 

CSR is a recently developed model as an alternative to SR 

that can overcome the drawbacks of traditional patch 

processing strategy used in sparse representation 

methods. CSR based fusion mechanism yields a single 

valued and shift-invariant output. The source images are 

decomposed into corresponding low-frequency and 

high-frequency bands. CSR paradigm is adapted to fuse 

the low-frequency bands. The wavelet energy evaluated 

over a local window region is employed to fuse the high-

frequency bands. 

Finally, the inverse wavelet transform applied over 

fused low and high-frequency bands results in the 

requisite high-resolution MS (HRMS) image. To validate 

the proposed method, experiments are conducted on 

degraded data and original data. Three different data 

sets from Pleiades and IKONOS are used for validation. 

The visual outcomes and quantitative measures approve 

the superiority of the proposed pan-sharpening method 

in balancing spatial enhancement and spectral 

preservance in the fused image. The proposed method 

also accomplishes optimal values for all the metrics at 

full-scale experimentation and RMSE, and CC at reduced-

scale experimentation. 
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Abbreviations  

AWLP Additive wavelet luminance proportional 
ATWT Atrous wavelet transform 
CSR Convolutional sparse representation 
CC Correlation coefficient 
DWT Discrete wavelet transforms 
GS Gram-Schmidt transform 
HF High frequency 
LFC Low-frequency component 
HFC High-frequency component 
HRMS High-resolution multispectral 
IHS Intensity-hue-saturation 
LRMS Low-resolution multispectral 
MTF-GLP Modulation transfer function- 

generalized lapalician pyramid 
MS   Multi-spectral 
PAN Panchromatic 
PS Pan-sharpening 
PCA Principal component analysis 
RMSE Root mean square error 
SR Sparse representation 
SAM Spectral angle mapper 
UIQI Universal image quality index 
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