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 Background and Objectives: Today, the use of methods derived from 
Reinforcement learning-based approaches, due to their powerful in learning 
and extracting optimal/desirable solutions to various problems, shows a 
significant wideness and success. This paper presents the application of 
reinforcement learning in automatic analog integrated circuit design. 
Methods: In this work, the multi-objective approach by learning automata is 
evaluated for accommodating required functionalities and performance 
specifications considering optimal minimizing the MOSFETs area and power 
consumption for two famous CMOS op-amps.  
Results: The performance of the circuits is evaluated through HSPICE and the 
approach is implemented in MATLAB, so a combination of MATLAB and 
HSPICE is performed. The two-stage and single-ended folded-cascode op-
amps are designed in 0.25μm and 0.18μm CMOS technologies, respectively. 
According to the simulation results, a power of 560.42    and an area of 
72.825     are obtained for a two-stage CMOS op-amp, and also a power of 
214.15    and an area of 13.76     are obtained for a single-ended folded-
cascode op-amp. In addition, in terms of total optimality index, MOLA for 
both cases has the best performance between the applied methods, and 
other research works with values of -25.683 and -34.162 dB, respectively. 
Conclusion: The results shown the ability of the proposed method to 
optimize aforementioned objectives, compared with three multi-objective 
well-known algorithms. 
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Introduction 

Analog circuits are essential role in the design of 

integrated circuits (ICs), so that their importance cannot 

be ignored. Due to the complexity of analog circuits, 

their desirable manual design is difficult to obtain at a 

reasonable time. The analog circuit design process 

mainly includes the selection of the best topology, circuit 

sizing, and layout synthesis [1]-[4]. Deterministic and 

meta-heuristic optimization techniques are used to 

circuit sizing. Deterministic optimization algorithms 

involve methods such as Newton and Levenberg-

Marquardt that provide the problems of choosing a good 

starting point, being trapped in the local optimum, and 

dependency on the continuity and differentiability of the 

cost functions [5]. Meta-heuristic algorithms, unlike the 

deterministic optimization methods, have high 

performance and ability for solving optimization 

problems [6]-[9]. The purpose of meta-heuristic 

algorithms is to find proper values for the decision 

design parameters of an optimization problem to 

optimize one/multiple cost function [10]. Designing the 

size of analog circuits is an important issue that can be 

carried out with innovative algorithm methods. 

Intelligent methods are being developed to design the 

size of analog circuits. With the advancement of ICs 

manufacturing technology, it is important to design 

circuits with high accuracy and in the smallest size 
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possible. 

Heuristic-based approaches make circuit design in the 

form of the single-objective (SO) and multi-objective 

(MO) optimization. Because circuits have conflicting 

goals, it is best to use multi-objective optimization 

(MOO). Unlike SO optimization, these methods attempts 

to find non-dominated solutions to optimize circuit 

performance. Several studies have been carried out in 

the design and optimization of circuits, which have 

achieved favorable results by providing approaches 

based on circuit theory and intelligent optimization 

techniques [11]-[25]. 

In Table 1, some of the recent similar research works 

are listed. In these studies, there are some defects for 

example, considering the problem as a SO, ignoring the 

execution time of the algorithms, not reporting the 

results of design parameters, etc. In addition to these 

methods, reinforcement learning can be considered as 

one of the other techniques used to design CMOS 

operational amplifiers (op-amps).  
 

Table 1 : A review of the latest similar research 

 

Ref. Year Technology 
Cost 

function 
Method 

Barros et al., 

[13] 
2010 UMC 0.18μm 

Area,  

Power 
GENOM 

Vural et al., 

[14] 
2012 TSMC 0.35 µm Area PSO 

Mallick et al., 

[16] 
2017 TSMC 0.35µm Area GSA_PSO 

Dehbashian et 

al., [17] 
2017 

0.18 & 0.25 

µm 
Area, Power 

Advanced 

GSA_PSO 

Dehbashian et 

al., [18] 
2017 

0.25 & 0.18 

µm 

Area,  

Power 
Co-AGSA 

 

Learning automata (LA) is based on reinforcement 

learning and is one of the main components in adaptive 

learning systems. It is an important research area of 

artificial intelligence (AI) and has a wide range of 

applications [26]-[32]. For the first time, Tsetlin created a 

new model of computer learning in 1961, now known as 

a LA [33]. The main goal was to determine the optimal 

action of a set of actions in such a way that it has the 

maximum probability of reward [34]. Various types of 

LA-based algorithms have been developed. In this work, 

we have used the MO version of learning automata 

(MOLA) method [35] for the automated design of CMOS 

op-amps (a two-stage CMOS op-amp and a single-ended 

folded-cascode op-amp).  

Among the innovative aspects and contributions of 

the present work, we can mention: (1) The applicability 

of LA to optimize the CMOS Op-Amps; (2) The proper 

definition of the problem constraints and cost functions 

to achieve an desirable compromise between 

performance characteristics; (3) Providing a 

comprehensive criterion to evaluate proposed approach 

due to the simultaneous effect of objectives and design 

specifications on the optimization problem; (4) The 

performance numerical and statistical evaluations of the 

proposed approach by expressing visual and statistical 

indicators and employing powerful competitor 

algorithms. 

The structure of the paper is as follows. Section 2 

provides a brief review of MOO and other MOO 

algorithms. In Section 3, our proposed tool, case studies, 

cost functions, Pareto-front evaluation criteria, and the 

suggested index are introduced. Also, the simulation 

results of the proposed tool in the two study cases and 

their comparison with other algorithms are provided in 

Section 4. Finally, the conclusions are summarized in 

Section 5. 

Multi-Objective Meta-Heuristic Optimization 

In real applications, we usually deal with problems 

that under specific circumstances are faced with several 

cost functions simultaneously. These issues are in the 

field of MOO. In other words, the role of a MOO is to 

simultaneously optimize two or more cost functions. 

These objectives are usually in trade-off. In this method, 

unlike the SO method, which only receives an acceptable 

solution, there is a set of optimal solutions, known as 

Pareto-optimal solutions or Pareto-front. In such 

problems, a set of solutions, which complies each cost 

function with an acceptable level, is defined as optimal 

solutions. In this paper, for the first time, the MOLA 

method is used along with three rival MOO algorithms 

(called NSGA-II [ 36], MOPSO [37], and MOIPO [38]) and 

all of them are defined in the following subsections. 

A.  Non-dominated Sorting Genetic Algorithm II (NSGA-II) 

In NSGA-II, sorting and ranking all solutions are 

created by the main features (diversity, convergence, 

and robustness of solutions in the Pareto-front) in order 

to choose better solutions to create new offsprings. The 

NSGA-II is based on fast non-dominated sorting and 

crowding distance assignment methods. The procedure 

ensure elitism allows adding constraints to ensure that 

the solutions are feasible. The NSGA-II creates a 

population of individuals and then creates a non-

domination level to rank and sort each individual. Then, 

it utilizes cross-over, mutation, and selection operators 

to produce new offspring. Subsequently, the parents and 

offspring are combined before partitioning the new 

combined pool into fronts [ 36]. The pseudo-code of the 

NSGA-II is shown by algorithm 1. 
 

Algorithm 1: The pseudo-code of NSGA-II 

I.  Initialize the parameters of the algorithm. 
II.  Initialize the population nPopi, , 1 i N. 

III.  Evaluate the cost functions. 
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IV.  Assign rank (level) based on Pareto dominance sort. 
V.  Generate child population. 

VI.  Perform binary tournament selection, recombination and 
mutation. 

VII.  for all nPopi, do  
VIII.  for each parent and child in population, do  

IX.  Assign rank (level) based on Pareto sort. 
X.  Generate sets of non-dominated vectors along PFknown 

(known/current Pareto-front). 
XI.  Adding solutions to the next generation starting from the first 

front until N individuals are found determine crowding 
distance between points on each front. 

XII.  end for 
XIII.  Select points (elitist) on the lower front (with lower rank) and 

outside a crowding distance. 
XIV.  Create next generation. 
XV.  Perform binary tournament selection, recombination and 

mutation. 
XVI.  end for 
XVII.  return Pareto-front solutions 

B.  Multi-Objective Particle Swarm Optimization 

(MOPSO) 

The PSO is one of the most important intelligent 

optimization algorithms. The main idea of this algorithm 

is taken from the social behavior of animals, such as 

birds and fish. Therefore, the search factor in this 

algorithm is birds and fish called particles. It is 

accompanied by a massive movement of birds and a shift 

in direction to their best position and their neighbors 

[39]. One of the most popular and effective proposals for 

MO versions of the PSO optimization algorithm is 

presented in [37]. The pseudo-code of the MOPSO is 

shown by algorithm 2. 
 

Algorithm 2: The pseudo-code of MOPSO 

I.  Initialize the parameters of the algorithm, maximum iteration 
(MaxIt). 

II.  Initialize the population nPopi, 1 i N. 
III.  Determine the initial speed (vi=0). 
IV.  Evaluate the cost functions. 
V.  Store the positions of the particles that represent non-

dominated vectors in the repository. 
VI.  Generate hyper cubes. 

VII.  while MaxIt has not reached, do  
VIII.  Calculate the speed of each particle [39]. 

  
 (   )   ( )    

 ( ) 

                                (      
 ( )    

 ( )) 

                                 (      ( )    
 ( )) 

   (1) 

where  ( ) is inertia weight,       
  is personal best position 

particle i in iteration t,        is the global best position i in 
the d-th dimension,    and    are cognitive and social 
parameters. 

IX.  Calculate the position and return the particles that are out of 
range of search to the search space, according to (2). 

  
 (   )    

 ( )    
 (t+1)     (2) 

X.  Evaluation of cost functions. 
XI.  Update repository (add non-dominant particles and eliminate 

dominated particles) 
XII.  Control the volume of the repository. 

XIII.  end while 
XIV.  return Pareto-front solutions 

C.  Multi-Objective Inclined Planes system Optimization 

(MOIPO) 

The search factors in inclined planes system 

optimization (IPO) algorithm are the number of small 

balls that are located on a sloping surface without 

friction. Three attributes of position, height and angels in 

relation to other balls are considered for each ball. The 

main idea of this algorithm is to assign a height to each 

ball according to its objective function. Height values 

represent the potential energy of the balls, and the 

movement of the balls downwards converts potential 

energy to kinetic energy and causes acceleration. In fact, 

agents tend to tine their potential energy and to reach 

the minimum point (s). The position of each agent is a 

possible solution in the problem space [40]. The MO 

version of the algorithm has been created in [38]. Also, 

the algorithm 3 shows its pseudo-code. 

 
Algorithm 3: The pseudo-code of MOIPO 

I.  Initialize the parameters of the algorithm, maximum iteration 
(MaxIt). 

II.  Initialize the population nPopi, 1 i N. 
III.  Determine the initial speed and acceleration (vi=0, ai=0)  
IV.  Evaluate the cost functions. 
V.  Store the positions of the balls that represent non-dominated 

vectors in the repository. 
VI.  Generate hyper cubes.  

VII.  while MaxIt has not reached, do  
VIII.  Calculate the acceleration and speed of each ball [38]. 

  
 ( )  ∑ (  ( )    ( ))

 

   

    (   
 ( )) (3) 

  
 ( )  

     
 ( )    

 ( )

  
 (4) 

where  ( ) is the unit step function,     
  is angle between the i-

th ball and j-th ball in d-th dimension. 
IX.  Calculate the position and return the balls that are out of range 

of search to the search space [38]. 

  (   )             
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 ( )       
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 where c1, c2, shift1, shift2, scale1, and scale2 are constants 
determined for each function, experimentally. 

X.  Evaluate the cost functions. 
XI.  Update repository (add non-dominant balls and eliminate 

dominated balls). 
XII.  Control the volume of the repository. 

XIII.  end while 
XIV.  return Pareto-front solutions 

D.  Multi-Objective by Learning Automata (MOLA) 

The MOLA is found more practicable and efficient in 

finding accurate solutions for complex optimization 

problems. The number of automata used in the MOLA 
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algorithm is equal to the dimension of the problem. For 

N dimensional problem, the MOLA includes N automata 

[35]. Each automaton is responsible for searching one 

dimension and acts independently in the environment. 

The pseudo-code of the MOLA is listed in algorithm 4. 

 
Algorithm 4: The pseudo-code of MOLA 

XV.  Initialize the parameters of the MOLA, maximum iteration    
(Nfemax), set Nfe=0. 

XVI.  Initialize a state X=[x1,…,xi,…,xN], randomly. 
XVII.  Determine the initial cell value randomly at the rang of [0,1].  

XVIII.  Evaluate the cost functions. 
XIX.  Store the positions of the actions that represent non-

dominated vectors in the repository. 
XX.  Generate hyper cubes.  

I.  while (Nfe  Nfemax), do  
II.  for i=1 to N, do 

III.  Select an unselected dimensional state xi randomly. 

IV.  Estimate path values   (  ), according to (8) [35]. 

  (  )  (    ) ∑   
    

   

   

    
    

        
              (8) 

V.  Calculate p1 (probability of selection the left path or the right 
path) and p2 (probability of choosing a cell between the k cells 

located on the path determines) [35]. 
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where  (  ) is cell value. Temperature   creates trade-off 
between the exploration and exploitation.  

VI.  Calculate reinforcement signal according to (11), set Nfe=Nfe+1, 

and update Xbest (12) [35] 
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where,  (  
 )               

              
 

VII.  Update cell value  (  )|       
 according to (13), where 

       (
         

    
)  

 (  )|       
  ( (  ))      (  )|       

   

(    )((    )     (  )         (  )) 
(13) 

VIII.  Move action to the new cell with a step length  , according to 
(14). When the    is selected, current dimensional state 
  moves to         and with the choice of   ,     moves 
to         . 

  (      )      (14) 

where   is distance (in the form of number of cells) between 
the current cell and the selected cell. 

IX.  Evaluate the cost functions. 
X.  Store the positions of the actions that represent non-

dominated vectors in the repository. 
XI.  Generate hyper cubes.  

XII.  while r(X)==1, do 
XIII.  Go to step (X) 
XIV.  end while 
XV.  end for 

XVI.  Use (15) to add perturbations to the dimensional states of Xbest 

, use (12) to update Xbest, set Nfe=Nfe+1. 

            (       ) (15) 

where     is        ( )   (             ) and   is 

   (  ) |         
  (  ) |         

.The   is random variable        

(     
 

 
 ). Also,     ( ) is a sign function. 

XVII.  end while 
XVIII.  return Pareto-front solutions 

 

An Automated Design Simulation Tool of CMOS 

Analog ICs Based on Circuit Intelligent Sizing for 

Low-Power/Low-Area Using the Proposed MOLA 

Method 

In this Section, an optimization tool is proposed for 

automated design of analog IC. It should be noted that 

analog circuits are simulated by HSPICE simulator. Also, 

MOLA and MO algorithms are performed in MATLAB. By 

connecting MATLAB and HSPICE software, the 

optimization process is done (Fig. 1). In the beginning, 

design parameters and design specifications are 

determined by the designer, while a reasonable 

predefined range is also taken into account for each 

design parameter. Note that design parameters consist 

of the length and width of the CMOS transistors, 

capacitor values, and biasing currents. 

 

 

 
Fig. 1:  The general structure of the automated circuit design 

simulation tool based on the intelligent MOO. 

 
Continue on this section, the desired amplifier 

circuits, cost functions, the proposed index, and Pareto-

front evaluation criteria are explained. 
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A.  Case Studies 

In this paper, in order to show the performance of 

MOLA method in the design of analog circuits, two 

important amplifiers are used. A two-stage CMOS op-

amp was designed in 0.25μm technology and a single-

ended folded-cascode op-amp with 0.18μm technology. 

There are 13 design parameters in each circuit. 

In Fig. 2, a two-stage CMOS op-amp is shown with 

miller. Design parameters in this circuit include 

transistor widths and lengths, biasing current (Ibias), 

compensation capacitance (Cc), and load capacitance 

(CL). Here, the appropriate matching relations are also 

imposed as M1=M2, M3=M4, and M5=M8. Furthermore, 

the positive power supply (VDD) and the negative power 

supply (VSS) are equal to 2.5V and -2.5V, respectively 

[18]. This circuit set values for the CC and CL that provide 

CC>0.22CL [16].  

Fig. 3 shows a single-ended folded-cascode amplifier. 

In this case, the biasing current, the total values of 

transistor widths and lengths are considered as design 

parameters. Here, the appropriate matching relations 

are also imposed as M1=M2, M3=M4=Mbp, M5=Mbn, 

M6=M7, M8=M9, and M10=M11. Furthermore, the positive 

power supply (VDD), the negative power supply (VSS), and 

CL are equal to 0.9V, -0.9V and 5pF, respectively [18]. 

Desired specifications (small-signal differential 

voltage gain (DC gain), gain-bandwidth product (GBW), 

phase margin, output swing, common mode rejection 

ratio (CMRR), and power supply rejection ratio (PSRR), 

etc.) are in accordance with Table 2  for both cases. Also, 

some equations are consistent with the circuit according 

to the following equations [18]. 

    
   (  )

      
(  )

 (16) 

            (      
(   ))

     (      
(  )) (17) 

            (      
(  ))

     (      
(  )) (18) 

where, dmi is the ratio of the drain-source voltage (VDS) 

to the saturated drain-source voltage (      
) of i-th 

transistor (Mi), and OSP and OSN are the output swing 

positive and output swing negative, respectively. 

B.  Cost Functions 

Herein, intelligent methods are used to optimize the 

two important and essential indicators of amplifier 

circuits, namely power consumption and total area 

MOSFETs. This cost functions are considered as follows. 

 Minimizing power consumption  

 Minimizing the total area MOSFETs 

C.  Total Optimality Index (TOI) 

In this paper, due to the diversity and multiplicity of 

qualitative indicators in the design problem, a total index 

is presented that illustrates the success of the 

optimization method. This indicator can be used to 

investigate the performance of the proposed 

optimization algorithm in the design problem. Therefore, 

a criterion called total optimality index (TOI) is proposed. 
 

 
Fig. 2: The two-stage CMOS op-amp circuit (Case 1) [18]. 

 
 

Fig. 3: The single-ended folded-cascode op-amp circuit (Case 2) 
[18]. 

 

Table 2 : Desired characteristics of Case 1 and Case 2 
 

Design specification 
Constraint 

Case 1 Case 2 

DC gain (dB) ≥70 ≥70 

GBW (MHz) ≥2 ≥12 

Phase Margin (deg) ≥50 ≥55 

Slew Rate (V/µs) ≥1.5 ≥10 

Output Swing (V) ≥2 ― 

CMRR (dB) ≥70 ― 

PSRR
+
 (dB) ≥70 ― 

PSRR
-
 (dB) ≥70 ― 

dm1, dm3, dm5, dm6, 

dm8, dm10 
― ≥1.2 

OSP (V) ― ≥0.5 

OSN (V) ―  -0.5 

MOSFETs Saturation Saturation 
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The TOI has been introduced to express the impact of 

the design specifications and the cost functions of the 

problem. The lower value of TOI represents the more 

favorable response. The index is defined as follows: 

   

         (    ( (   ))  (  ) 
∑    (  )

∑    ( )
)  (19) 

where, A is total area of the MOSFET in µm
2
 and P is the 

power consumption in mW (as the cost functions), C is 

design specifications (constraints) and CB is specifications 

boundary value in the problem of designing an amplifier 

circuit. In (19), to balance the values of power and area, 

the amount of area is normalized between zero and one, 

and due to the negativity of some of the design 

specifications; the absolute values of C and CB are used. 

Also, with a mean less than a fractional value based on 

this theory and dominant experimental results, the final 

TOI was logarithmically considered. The most desirable 

TOI (minimum) is created by minimizing cost functions 

and maximizing the design specifications. The design of 

the TOI is such that the main focus is on the cost 

functions of the problem and a minor improvement in 

one of them will minimize the TOI. The logarithm 

coefficient of 20 is to increase the TOI sensitivity to a 

partial improvement of the fitness values of the cost 

functions. 

D.  Pareto-front evaluation criteria 

In order to evaluate Pareto-front, two criteria of the 

overall non-dominated vector generation (ONVG) and 

spacing (SP) are used. Despite the existence of other 

criteria for studying the quality of the Pareto-front, the 

reason for choosing these two criteria is that there is no 

need to know the real Pareto-front and they are 

produced in accordance with the received Pareto-front. 

 ONVG: The ONVG represents the number of 

optimally non-dominated responses (based on 

Pareto-front) in a MO problem [38]. 

     |       | (20) 

where, |PFknown| is the number of vectors in PFknown.  

 SP: The SP numerically represents the spread of the 

vectors in the PFknown and measures the distance 

variance of neighboring vectors in it (as (21)) [38]. 

   √
∑ ( ̅    )
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where,        (|  
 ( )    

 
( )|  |  

 ( )    
 
( )|), 

           . The  ̅ is the mean of all di, and n is the 

number of vectors in PFknown (|PFknown |). So that, 

    , means that all members are spaced evenly apart 

in [38]. 

Simulation and Analysis Results 

This section is divided into two subsections. In the 

first subsection, the results and analysis are presented in 

the optimization of two circuits. All the results are 

reported in the form of the values of cost functions, 

design parameters, design specifications, and TOI. The 

best, worst, mean, and variance of the values of the cost 

functions and the TOI are presented for proposed 

method in the best run. The integration index, Pareto-

front, and bode curve figures are also presented. The 

second subsection is organized by the qualitative and 

quantitative analysis of the proposed MOLA approach. In 

addition, the Pareto indexes and the runtime of MOLA 

performance are analyzed in comparison with other 

proposed algorithms in the best run. All 

implementations are performed in MATLAB 2016a 

MathWorks and HSPICE A-2008.3 under a computer 

system with Intel® Core™ i5-4460U CPU @ 3.20GHz, 4GB 

RAM, and Windows Enterprise 10. The vectors of design 

parameters that should be determined by the proposed 

tools are as follows: 

        

                                             
(22) 

        

                                               (23) 

The details on design parameters for both cases are 

listed in Table 3. Also, all control parameters of the 

proposed methods are presented in Table 4. 
 

Table 3: The range of design parameters 

Design 

parameter 

Case 1 Case 2 

Lower 

bound 

Upper 

bound 

Lower 

bound 

Upper 

bound 

W (µm) 5 40 0.24 200 
L (µm) 0.25 2 0.18 5 

Ibias (µA) 20 40 30 400 
CC (pF) 2 20 ― ― 
CL (pF) 7 15 ― ― 

 

A.  Results and Comparisons for Case Studies 

In order to demonstrate the ability of the 

reinforcement learning method to solve the problem of 

circuit optimization, the results are compared with 

several intelligent methods and previous studies. 

Table 5 and Table 6 show the best solution in the best 

run of the algorithms for the case 1 and case 2 that is 

generated by the best TOI (minimum). The bolded 

responses show the best values in terms of design 

specifications, cost functions, and TOI. In Case 1, the 

MOLA method is able to produce the low-area and low-

power with the values 72.825 µm
2
 and 560.42 µW, 
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respectively, and these values are created with the 

minimum values for design parameters such as biasing 

current, compensation capacitance, and load 

capacitance. The algorithms intelligently set values for 

the CC and CL that provide CC>0.22CL. Additionally, the 

ability of the MOLA is more specific than other 

algorithms in the TOI. According to the table, this 

superiority, relative to the best Pareto-optimal solution 

of algorithms, is achieved with 56.14%, 12.5%, 8.33%, 

and 25% by MOLA, MOPSO, MOIPO, and NSGA-II, 

respectively. Table 6 shows that from the point of view 

of area assessment, the MOLA method for Case 2 is 

superior to MOIPO, MOPSO and NSGA-II with the values 

of 67.45%, 65.25%, and 32.85%, respectively. The results 

show that the MOLA method with the least power and 

area can produce the best TOI with a value of -34.1627. 

Also, Table 7 shows the statistical comparisons proposed 

method. 

The evaluation of the proposed strategy for improving 

the integrated circuit criterion and the power 

consumption in the best run (minimum TOI) for case 

studies is shown in Fig. 4 and Fig. 5.  

Fig. 6 shows the Pareto-fronts in the best run (in 

terms of TOI criterion) for the proposed algorithms. The 

variety and the number of presented Pareto-front 

solutions provide a wide range of selection for the circuit 

designer. MOLA responses have dominated Pareto-front 

solutions of other algorithms. The HSPICE simulation 

results obtained from the optimally designed two op-

amps are shown in Fig. 7 and Fig. 8 . Also, they show the 

values of Gain DC, GBW, Phase Margin, and Gain Margin 

for the MOLA in a solution which has the best TOI. 

A comprehensive comparison between the results of 

the proposed MOLA algorithm and those of other rival 

methods is presented in Tables 8 and 9 along with other 

studies.  

According to these tables, the circuit optimization by 

MOLA, compared to recent studies, has produced 

favorable values of power with the smallest MOSFET 

size.  

It can be said that an effective trade-off between 

optimized low-power and low-area in the results of the 

proposed automata algorithm is more desirable. 

 
Table 4: Control settings 

NSGA-II MOPSO MOIPO MOLA 

Total Run=20 Total Run=20 Total Run=20 Total Run=20 

MaxItCase1=100 MaxItCase1=100 MaxItCase1=100 Nfemax Case1=2000 

MaxItCase2=150 MaxItCase2=150 MaxItCase2=150 Nfemax Case2=3500 

nPop=20 nPop=20 nPop=20 nRep=20 

nRep=20 nRep=20 nRep=20 D=500 

Pc=0.9 c1=1.4962 c1=0.1 k=50 

Pm=0.1 c2=1.4962 c2=3.05          

     W=1 shift1=100        

      Wdamp=0.73 shift2=300          

― nGridCase1=4 scale1=0.03           

― nGridCase2=10 scale2=0.03 nGridCase1=4 

―       nGridCase1=4 nGridCase2=10 

― 𝛽    nGridCase2=10       

― 𝛾          𝛽    

― ― 𝛽    𝛾    

― ― 𝛾    ― 

 

B.  Performance Analysis 

Tables 10-14 report statistical analysis of the 

performance of the MOLA method in relation to the 

control parameters (k, D, and Nfemax) on the cost 

functions and TOI in the best run (based on TOI value). In 

Table 13, the effect of the MOLA parameters on the 

implementation time and Pareto-front criterion is 

reported. 

Finally, for the performance analysis of Pareto 

indexes and runtime of MOLA with other assumed 

algorithms in the best run, Table 14 is provided. 
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Table 5: Optimal results of parameters based on the best solution for all methods (Case 1) 

Parameter 
 The best Pareto-solution/method 

20/NSGA-II 16/MOIPO 4/MOPSO 1/MOLA 

Design 

parameter 

W1/L1=W2/L2 (µm/µm) 7.184/1.336 9.999/1.306 6.484/1.416 5.104/1.654 

W3/L3=W4/L4 (µm/µm) 19.765/0.524 25.108/0.731 19.366/1.272 6.813/0.537 

W5/L5=W8/L8 (µm/µm) 12.408/1.055 15.825/1.408 13.649/1.26 9.221/1.479 

W6/L6 (µm/µm) 24.584/0.377 30.548/0.341 33.489/0.548 25.988/0.735 

W7/L7 (µm/µm) 15.694/0.872 23.706/1.58 16.599/0.919 12.071/0.797 

CC (pF) 9.748 12.635 10.845 7.831 

CL (pF) 9.094 14.138 9.181 8.868 

I bias (µA) 21.77966 27.981 23.889 20.037 

Design 

specification 

DC gain (dB) 70.301 73.637 78.197 72.751 

GBW (MHz) 2.525 2.328 2.091 2.110 

Phase margin (deg) 55.102 50.164 54.470 50.596 

Slew rate (V/µs) 2.309 2.661 2.436 3.020 

Output Swing (V) 2.412 2.327 2.355 2.306 

CMRR (dB) 80.101 87.416 99.358 104.156 

PSRR
+
(dB) 76.147 75.570 85.245 82.222 

PSRR
- 
(dB) 88.012 103.460 115.7 82.892 

Objective 

Area (µm
2
) 119.513 155.260 135.632 80.199 

Power consumption(µW) 678.47 748.39 641.09 562.41 

TOI -19.7231 -16.7304 -20.2187 -25.5832 

 

 
Table 6: Optimal results of parameters based on the best solution for all methods (Case 2) 

Parameter 
 The best Pareto-solution/algorithm 

1/NSGA-II 14/MOIPO 7/MOPSO 1/MOLA 

Design 

parameter 

W1/L1 (µm/µm) 22.46/0.858 80.009/3.440 55.645/1.608 13.27/0.515 

W3/L3 (µm/µm) 76.544/0.504 49.713/0.351 116.105/0.396 84.054/0.322 

W5/L5 (µm/µm) 67.766/1.134 120.010/2.110 104.32/2.863 19.103/0.57 

W6/L6 (µm/µm) 5.21/1.691 6.254/2.449 10.793/2.859 0.619/0.467 

W8/L8 (µm/µm) 19.846/0.842 42.714/1.222 88.313/2.606 18.057/0.732 

W10/L10(µm/µm) 28.56/1.068 79.343/2.021 59.278/2.962 16.956/1.347 

I bias (µA) 61.519 57.283 54.997 50.491 

Design 

specification 

DC gain (dB) 75.881 80.588 82.502 70.782 

GBW (MHz) 15.507 13.777 13.215 12.538 

Phase margin (deg) 82.067 70.049 60.925 83.077 

Slew rate (V/µs) 12.209 11.423 10.973 10.098 

dm1 11.906 10.200 12.479 14.480 

dm3 2.499 3.077 3.316 2.739 

dm5 4.106 4.286 3.807 4.0319 

dm6 1.644 1.679 2.138 1.514 

dm8 2.895 2.943 2.084 4.564 

dm10 5.032 5.721 4.952 3.664 

OSP (V) 0.620 0.654 0.635 0.576 

OSN (V) -0.567 -0.563 -0.607 -0.555 

Objective 

Area (µm
2
) 20.494 39.600 42.277 13.760 

Power consumption 

(µW) 
277.36 256.54 244.290 221.07 

TOI -29.1398 -23.535 -23.0556 -34.1627 
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Table 7: Total statistical comparison of objectives and TOI for MOLA (Case 1 & Case 2) 

MOLA Case 1 Case 2 

Best 

Area (µm
2
) 72.825 13.759 

Power consumption (µW) 560.420 214.150 

TOI -25.583 -34.163 

Worst 

Area (µm
2
) 81.563 14.924 

Power consumption (µW) 650.350 221.070 

TOI -24.0644 -33.848 

Mean 

Area (µm
2
) 75.499 14.458 

Power consumption (µW)  625.590 215.064 

TOI -25.0644 -33.848 

Variance 

Area (µm
2
) 6.663 0.084 

Power consumption (µW) 857.920 2.641 

TOI 0.0432 0.026 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4:  Evaluated area and power consumption in case1, (a): Area, (b): Power consumption, (c): Integration percentage. 

 
(a) 

 
(b) 

 
(c) 
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Fig. 5:  Evaluated area and power consumption in case 2, (a): Area, (b): Power consumption, (c): Integration percentage. 

Table 8 : Comparison with other methods (Case 1) 

MOLA MOIPO MOPSO NSGA-II CO-GSA [18] 
AGSA_PSO+PF 

[17] 

GSA-PSO 

 [16] 
PSO [14]  

0.25 0.25 0.25 0.25 0.25 0.25 0.35 0.35 Technology (µm) 

73.808 75.63 79.296 71.024 74.785 70.441 75.43 42 DC gain (dB) 

2.127 2.340 4.049 2.651 2.644 2.017 5.776 ― GBW (MHz) 

60.616 56.21 59.140 58.471 78.448 50.181 66.2 83.8 Phase margin (deg) 

3.023 2.668 4.567 2.326 10.897 2.231 10.88 22.4 Slew rate (V/µs) 

2.343 2.371 2.364 2.413 2.232 2.415 ― ― Output swing (V) 

104.156 87.416 108.677 108.906 78.040 88.187 87 84.2 CMRR (dB) 

82.530 83.413 86.172 76.403 87.190 72.675 83.2 40.1 PSRR
+ 

(dB) 

95.485 103.460 121.630 88.421 86.650 131.910 110.4 68 PSRR
- 
(dB) 

72.825 122.13 100.285 99.042 129.845 210.003 109.6 296 Area (µm
2
) 

560.420 748.390 565.930 582.670 349.420 700.710 712.8 1260 
Power consumption 

(µW) 

-25.684 -16.7667 -20.2187 -19.7231 -12.3958 -8.1609 -17.52 -3.0968 TOI 

 
(a) 

 
(b) 

 
(c) 

 



Low-Area/Low-Power CMOS Op-Amps Design Based on Total Optimality Index Using Reinforcement Learning Approach 

209 
 

 

 

(a) (b) 

Fig. 6:  Pareto-front of the MOIPO, MOPSO, NSGA-II, and MOLA, (a): Case 1, (b): Case 2. 

 

 

 
 

 

 

 
Fig. 7:  Bode diagram plotted by the proposed methods in case 1. 
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Fig. 8: Bode diagram plotted by the proposed methods in case 2. 

 

 

Table 9: Comparison with other methods (Case 2) 

 
GENOM 

[13] 

FRIDGE 

[18]  
AGSA_PSO+PF [17] NSGA-II MOPSO MOIPO MOLA 

Technology (µm) 0.18 0.18 0.18 0.18 0.18 0.18 0.18 

DC gain (dB) 70.610 70.00 70.427 76.637 85.349 81.233 70.782 

GBW (MHz) 15.350 16.00 15.505 15.507 16.359 18.176 12.538 

Phase margin (deg) 79.60 80.60 83.574 82.067 68.032 70.049 83.077 

Slew rate (V/µs) 15.360 15.300 10.001 12.212 15.400 16.862 10.098 

dm1 9.245 9.780 15.067 13.310 13.213 12.613 16.571 

dm3 1.568 5.200 2.419 2.499 3.733 3.257 2.739 

dm5 1.836 2.210 5.540 4.138 3.970 4.791 5.638 

dm6 8.171 10.500 2.217 1.971 3.216 3.584 1.513 

dm8 2.807 3.050 2.220 2.895 2.378 2.943 4.564 

dm10 1.653 1.950 11.709 5.032 5.818 5.721 3.664 

OSP (V) 0.566 0.625 0.695 0.620 0.647 0.654 0.577 

OSN (V) -0.505 -0.502 -0.641 -0.606 -0.676 -0.697 -0.556 

Area (µm
2
) 16.870 23.710 16.961 20.494 34.500 37.439 13.760 

Power consumption 

(µW) 
244.60 233.30 222.10 270.73 236.61 227.47 214.15 

TOI -31.7005 -29.3704 -32.9950 -29.1398 -23.0556 -23.535 -34.1627 
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Table 10: Comparison of the effect of k on objectives and TOI (Case 2) 

MOLA 
(D=500, Nfemax=3500) 

k=4 k=10 k=50 k=100 

Area (µm
2
) 

Best 28.817 21.4678 13.760 14.6994 

Worst 28.949 21.5047 14.925 16.8876 

Med 28.852 21.4833 14.449 16.5030 

Mean 28.846 21.4827 14.458 16.2131 

Variance 0.0008 0.0001 0.0840 0.5101 

Power 

consumption (µW) 

Best 427.040 307.180 214.150 247.870 

Worst 427.110 307.310 221.070 268.920 

Med 427.090 307.230 214.770 253.060 

Mean 427.094 307.237 215.064 257.799 

Variance 0.0002 0.0016 2.9630 49.0146 

TOI 

Best -22.131 -27.252 -34.424 -32.044 

Worst -22.091 -27.241 -33.835 -30.944 

Med -22.120 -27.249 -34.137 -31.089 

Mean -22.122 -27.248 -34.119 -31.220 

Variance 7.8698E-05 8.9966E-06 0.0249 0.1314 

 
Table 11: Comparison of the effect of D on objectives and TOI (Case 2) 

MOLA 
(k=50, Nfemax=3500) 

D=100 D=500 D=1000 D=2000 

Area (µm
2
) 

Best 14.894 13.760 19.503 26.802 

Worst 15.755 14.925 21.246 27.233 

Med 15.438 14.449 20.454 26.990 

Mean 15.426 14.458 20.4190 27.004 

Variance 0.057 0.0845 0.2522 0.0152 

Power 

consumption 

(µW) 

Best 228.420 214.150 221.9700 483.570 

Worst 230.380 221.070 223.1100 485.290 

Med 228.620 214.770 222.18 484.850 

Mean 228.847 215.064 222.3471 484.619 

Variance 0.3689 2.963 0.1490 0.2940 

TOI 

Best -33.182 -34.424 -31.151 -20.951 

Worst -32.595 -33.835 -30.381 -20.584 

Med -32.836 -34.138 -30.705 -20.716 

Mean -32.834 -34.119 -30.739 -20.732 

Variance 0.0247 0.0249 0.0506 0.0186 

 
Table 12: Comparison of the effect of Nfemax on objectives and TOI (Case 2) 

MOLA 
(k=50, D=500) 

Nfemax=1000 Nfemax=3500 Nfemax=5000 Nfemax=10000 

Area (µm
2
) 

Best 12.333 13.760 14.274 12.972 

Worst 15.106 14.925 15.463 13.429 

Med 13.106 14.449 14.734 13.388 

Mean 13.171 14.458 14.872 13.348 

Variance 0.5778 0.0845 0.1486 0.0138 

Power 

consumption 

(µW) 

Best 281.180 214.150 238.260 219.090 

Worst 288.690 221.070 240.270 219.790 

Med 286.780 214.770 239.355 219.130 

Mean 286.116 215.064 239.255 219.192 

Variance 6.5233 2.963 0.3855 0.0339 

TOI 

Best -33.334 -34.424 -33.247 -34.955 

Worst -31.274 -33.835 -32.503 -34.641 

Med -32.674 -34.138 -32.943 -34.671 

Mean -32.634 -34.119 -32.866 -34.697 

Variance 0.2931 0.0249 0.0586 0.0065 
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Table 13: Comparison of the effect of K, D, Nfemax on SP, ONVG, and Time 

MOLA SP ONVG TIME (s) 

D=500 

NFEMAX=3500 

k=4 0.0330 20 2608.91 

k =10 0.0161 19 2610.70 

k =100 0.2786 13 2744.20 

k=50 

NFEMAX=3500 

D=100 0.3349 20 2594.60 

D=1000 0.1148 17 2589.50 

D=2000 0.1989 14 2630.45 

k=50 

D=500 

Nfemax=1000 1.2421 10 570.74 

Nfemax=5000 0.2052 20 3831.57 

Nfemax=10000 0.0575 13 7780.37 

Nfemax=3500 0.0420 16 2508.90 

 
Table 14: Performance analysis of Pareto indexes and runtime for MOLA with other proposed algorithms 

 Case 1 Case 2 

NSGA-II MOPSO MOIPO MOLA NSGA-II MOPSO MOIPO MOLA 

SP 70.107 605 3.247 8.024 1.506 39.353 8.978 0.034 

ONVG 20 7 16 20 20 8 15 16 

TIME (s) 1248 1436 1456 1188.86 2528 2472 2419 2508.9 

 

 

Conclusion 

In this paper, an intelligent design simulation tool was 

proposed to optimize CMOS op-amps. It was inferred 

from the results that the MOLA is suitable for creating a 

good trade-off between cost functions. In addition, it 

establishes the qualitative and quantitative 

characteristics of the circuits. The final evaluation 

indicated that MOLA is superior to other competitors. 

This method can be developed for optimal design 

domain of other analog and digital integrated circuits in 

the future. Also, the proposed method can be improved 

for designing more complex circuits with intense design 

specifications. 
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Abbreviations  

 ( ) Inertia weight 

      
   Personal best position particle i in 

iteration t 
       Global best position i in the d-th 

dimension 
   Cognitive parameter 
   Social parameter 
 ( ) The unit step function 

    
  Angle between the i-th ball and j-th 

ball in d-th dimension 
Nfemax Maximum iteration     
p1 Probability of selection the left path 

or the right path 
p2  Probability of choosing a cell 

between the k cells located on the 
path determines 

 (  ) Cell value 
  Step length 
dmi The ratio of the drain-source 

voltage (VDS) to the saturated drain-
source voltage (      

) 

OSP Output swing positive 
OSN Output swing negative 
TOI Total optimality index 
A Total area 
P Power consumption 
C Design specifications (constraints) 
CB Specifications boundary value in 
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the problem of designing an 
amplifier circuit 

ONVG Number of optimally non-
dominated responses 

SP  Spacing metric 
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