J. Electr. Comput. Eng. Innovatiod€2):199-214, 2018

Journal of Electrical and Computer Engineering Innovations

(JECEI)
Journal homepagéhttp:// www.jecei.sru.ac.ir

Research paper
[ 2B NB K[2BEN / A VLIAhBSaAdy . &SR
hLIOAYFEAGE LYRSE !'aAy3d wSAYyF2NDS

N. Sayyadi ShahrakiS H. Zahiri
Department of Electrical and Computer Engineering, University of Birjand, Birjand, Iran

Article Info

ExtendedAbstract

Article History:
Received7 July2017
Revisedl0 January2018
Acceptedl 6 May 2018

Keywords

Low-Area and LowPower
CMOS ofamp
Multi-objective optimization
Reinforcement learning
Total optimality index

"CorrespondingAu t h oEmails
Address:hzahiri@birjand.ac.ir

Background and ObjectivesToday, the use of methods derived fro
Reinforcement learninpased approaches, due to their powerful in learni
and extracting optimal/desirable solutions to various problems, show
significant wideness and succeskhis paper presents the application
reinforcement learning in automatic analagtegrated circuitdesign.
Methods: In this work, the mlti-objectiveapproach by learning automata |
evaluated for accommodating required functionalities and performat
specifications considering optimal minimizing the MOSFETs area and |
consumption for two famous CMOS-amps.

Results:The performance of the cirdsiis evaluated through HSPICE and
approach is implemented in MATLAB, so a combination of MATLAE
HSPICE is performed. The tatage and singlended foldedcascode op
amps are designed in 0.25puym and |
Accordingto the simulation resultsa power of 560.42 wand an area of
72.825' & are obtained fora two-stage CMOS eamp, and also a power @
214.15° wand an area of 13.76 & are obtained for a singtended folded
cascode ommp. In addition, interms of total optimality index, MOLA fa
both cases has the best performance between the applied methods,
other research works with values ¢#5.683 and34.162 dB, respectively.
Conclusion: The results shown the ability of the proposed method
optimize aforementioned objectives, compared with threeulti-objective
well-known algorithms.

dependency on the continuity and differentiability of the

o . . ) cost functions[5]. Meta-heuristic algorithms, unlike the
Analog circuits are essential role in the design of

int ted circuits (IC that their i ; tdeterministic optimization methods, have high
integrate circuits (ICs), so tha heir importance canno performance and ability for solving optinaiion
be ignored.Due to the complexity of analog circuits, bl 691 Th f heuristi
their desirable manual design is difficult tbtain at a problems [6]-{9]. € purpose of metaeuristic

. o . algorithms is to find proper values for the decision
reasonable time. The analog circuit design process

o _ . design parameters of an optimization problem to
mainly includes the selection of the best topology, circuit ___. ~. . . .
. L optimize one/multide cost function[10]. Designing the
sizing, and layout synthesid]-[4]. Deterministic and

. LT . size of analog circuits is an important issue that can be
meta-heuristic optimization techniques are used to . . . . .
reuit sizi Deterministi timizati lqorith carried out with innovative algorithm methods.
cireuit -sizing. - Deterministic: optimizafion —aigorfinms Intelligent methods are being developed to design the
involve methods such as Newton and Levenberg_. . .
. . size of analog citgts. With the advancement of ICs
Marquardt that provide the problems of choosing a good

arti int. being t 4 in the local g q manufacturing technology, it is important to design
starting point, being trapped in the local aptum, an circuits with high accuracy and in the smallest size
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possible. performance  characteristics; (3) Providing a
Heuristicbased approaches make circuit design in thecomprehensive criterion to evaluaggroposed approach
form of the singleobjective (SO) and multibjective  due to the simultaneous effect of objectives and design
(MO) optimization. Because circuits have conflictingspecifications on the optimization problem; (4) The
goals, it is best to use mubbjective optimization performance numerical and statistical evaluations of the
(MOO). Unlike SO optimization, these methods attemptgroposed approach by expressing visual and statistical

to find nonrdominated solutions to optimize circuit indicators and ermloying powerful competitor

performance. Several studies have beenriear out in  algorithms.

the design and optimization of circuits, which have The structure of the paper is as follows. Section 2

achieved favorable results by providing approachesrovides a brief review of MOO and other MOO

based on circuit theory and intelligent optimization algorithms. In Section 3, ogroposed tool, case studies,

techniques[11]-[25]. cost functions, Paretéront evaluation criteria, and the
In Tablel, some of the recent similar research works suggested index are introduced. Also, the simulation

are listed. In these studies, there are some defects foresults of the proposed tool in the two study cases and

example, considering the problem as a SO, ignoring théheir comparison with other algorithms are provided in

execution time of the algorithmsnpot reporting the  Section 4. Finally, the conclusions are summarized in

results of design parameters, etc. In addition to theseSection 5.

methods, reinforcement learning can be considered asyyti -Objective MetaHeuristic Optimization

one of the other techniques used to design CMOS

operational amplifiers (o@mps). In real applications,we usually deal with problems

that under specific circumstances diagced with several

Tablel : A review @ the latest similar research cost functions simultaneouslyThese issues are in the
field of MOO. In other words, the role of a MOO s to
Ref. Year Technology Cost. Method snmultanepus_ly optimizetwo or more cost. functions.
function These objectives are usually in trad. In this method,
Barros et al., 2010 UMC 0 . :Area, GENOM unhkg the SO method, which ohly recelvgs an acceptable
[13] Power solution, there is a set of optimal solutions, known as
Vural et al., 2012 TSMC 0.35 pArea PSO Paretooptimal solutlon§ or Pfslretdront. . In such
[14] problems, a set of solutions, which complies each cost
Mallick et al., 2017 TSMC 0.35.nArea GSA_PSC funct.|on with an acceptable level, is dgﬂned as optimal
[16] solutions. In this paper, for the first time, the MOLA
Dehbashian e 0.18&0.25 Advanced method is used along with three rival MOO algorithms
2017 Area, Powel
al, [17] Hm GSA_PSC  (called NSGA [ 36], MOPS®37], and MOIPQ38]) and
Dehbashiaret 2017 0.25 & 0.18 Area, CoAGSA all of them are defined in the following subsections.
al.,[18] pm Power

A. Nondominated Sorting Genetic Algorithm Il (NSIGA

Learning automata (LA) is based on reinforcement In NSGAI, srting and ranking all solutions are
learning and is one of the main components in adaptivecreated by the main features (diversity, convergence,
learning systems. It is an important research area ofind robustness of solutions in the Pardtont) in order
artificial intelligence (Al) and has a wide range ofto choose better solutions to create new offsprings. The
applicationg26]-[32]. For the first time, Tsetlin created a NSGAIl is based on fast nedominated sorting and
new model of computer learning in 1961, now known ascrowding distance assignment methods. The procedure
a LA[33]. The main goal was to determine thetopal ~ ensure elitism allows adding constraints to ensure that
action of a set of actions in such a way that it has thethe solutions are feasible. The NSGAcreates a
maximum probability of reward34]. Various types of population of individuals and then creates a Ron
LAbased algorithms have been developed. In this workdomination level to rank and sort each individu@hen,
we have used the MO version of learning amata it utilizes crossover, mutation, and selection operators
(MOLA) method35] for the automated design of CMOS to produce new offspring. Subsequently, the parents and
op-amps (a twestage CMOS eamp and a singkended  offspring are combined before partitioning the new
folded-cascode ommp). combined pool into frontg 36]. The psedo-code of the

Among the innovative aspects and contributions of NSGAl is shown by algorithm. 1
the present work, we can mentio (1) The applicability
of LA to optimize the CMOS @mps; (2) The proper
definition of the problem constraints and cost functions I:' :”?t?a'?ze the parameters of the algorithm.

. . . . Initialize the populatiomPopi,, 1 i N.
to achieve an desirable compromise between . Evaluate the cost functions.

Algorithm 1: The pseud@ode of NSGAI
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IV. Assign rank (level) based on Pareto dominance sort.
V. Generate child population.
VI. Perform binary tournament selection, recombination ar
mutation.
VII. for allnPopj do
VIII. for each parent and child in populatiodo
IX. Assign ranki¢vel) based on Pareto sort.
X. Generate sets of nedominated vectors alongPRnown
(known/current Paretefront).
Adding solutions to the next generation starting from the fir
front until N individuals are found determine crowdin
distance between pointsroeach front.
XIl. end for
XIll. Select points (elitist) on the lower front (with lower rank) ar
outside a crowding distance.
XIV. Create next generation.
XV. Perform binary tournament selection, recombination ar
mutation.
XVI. end for
XVII. return Paretcfront solutions

B. Multi-Objectve Particle Swarm Optimization
(MOPSO)

XI.

C. Multi-Objective Inclined Planes system Optimization
(MOIPO)

The search factors in inclined planes system
optimization (IPO) algorithm are the number of small
balls that arelocated on a sloping surface without
friction. Three attributes of position, height and angels in
relation to other balls are considered for each ball. The
main idea of this algorithm is to assign a height to each
ball according to its objective functioHeight values
represent the potential energy of the balls, and the
movement of the balls downwards converts potential
energy to kinetic energy and causes acceleration. In fact,
agents tend to tine their potential energy and to reach
the minimum point (s).The position of each agent is a
possible solution in the problenspace [40]. The MO
version of the algorithm has been creatad|[38]. Alsq
the algorithm 3 shows its pseudmde.

The PSO is one of the most important intelligent™jgorithm 3 The pseudaode of MOIPO

optimization algorithms. The main idea of this algorithm
is taken from the social behavior of animals, such as

I. Initialize the parameters of the algorithm, maximum iteratic
(Maxlt).

birds and fish. Therefore, the search factor in this !l Initialize the populatiomPopjl i N.

algorithm is birds and fish called particles. It

Ill. Determine the initial speed and acceleratias=Q,a=0)
IV. Evaluate the cost functions.

accompanied by a massive movement of birds and a shift v. store thepositions of the balls that represent natominated

in direction to their best position and theineighbors
[39]. One of the most popular and effective proposais f

vectors in the repository.
VI. Generate hypecubes.
VII. while MaxIt has not reacheddo

MO versions of the PSO optimization algorithm is v calculate the acceleration and speed of each[BalL

presented in[37]. The pseudacode of the MOPSO is

shown by algorithm 2.

Algorithm 2: The pseude@ode of MOPSO

I. Initialize the parameters of the algorithm, maximduteration
(Maxlt).
1. Initialize the populatiomPopj 1 i N.
Ill. Determine the initial speed/E0).
IV. Evaluate the cost functions.
V. Store the positions of the particles that represent Ro
dominated vectors in the repository.
VI. Generate hypecubes.
VII. while MaxIthas not reacheddo
VIIl. Calculate the speed of eaglarticle[39].

otv o
6t Ot ROQI0O @ o 1)
6 1l O MOQiIGO @ o

0o p 1

where] 0 is inertia weight & Q iis personal best positior
particlei in iterationt, "Qc Q iistthe global best positiohin
the d-th dimension, & and 6 are cognitive and socia
parameters.

IX. Calculate the position anceturn the particles that are out of
range of search to the search space, accordin@}o
@O p woO U (t+l) 2)

X. Evaluation of cost functions.

. Update repository (add nedominant particles and eliminate

dominated partites)

XII. Control the volume of the repository.

XIlIl. end while

XIV. return Paretofront solutions

x

© o YQo Q6 tOE% o 3)
®w 0 wo
0o — 4
30

where"Y 8 is the unit step function%; is angle between the
th ball andj-th ball ind-th dimension.
IX. Calculate the posbn and return the balls that are out of rang
of search to the search spaf%f].

0o p Of Giid ots0 -
QL GEEd 0130 © O
0 ¢ (I)
° L AZB IW0dl HHa0 (©)
0 ¢ J)
° o AoDPo 'm0l HHaQ @)

wherec;, ¢,, shift;, shift,, scale, andscale are constants
determined for each function, experimentally.
X. Evaluatethe cost functions.
XI. Update repository (add nedominant balls and eliminate
dominated balls).
XIl. Control the volume of the repository.
XIlI. end while
XIV. return Paretafront solutions

D. Multi-Objective by Learning Automata (MOLA)
The MOLA is found more practicable agfficient in

finding accurate solutions for complex optimization
problems. The number of automata used in the MOLA
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algorithm is equal to the dimension of the problem. For

N dimensional problem, the MOLA includdsautomata

dominated vectors in the repository.
Xl. Generate hypecubes.
XIl. while r(X)==1do

[35]. Each automaton is responsible for searching one . Go to step (X

dimensionand acts independently in the environment.

The pseudecode of the MOLA is listed in algorithm 4.

Algorithm 4: The pseude@ode of MOLA

XV. Initialize the parameters of the MOLA, maximuiteration
(Nfemax); SetNe=0.
XVI. Initialize a stateé=[x;, X,, XJ, randomly.
XVII. Determine the initial cell value randomly at the rang of [0,1].
XVIII. Evaluate the cost functions.
XIX. Store the positions of the actions that represent no
dominated vectors in the ository.
XX. Generate hypecubes.
I. while (Nie  Niemay), dO
II. fori=1toN, do
Ill. Select an unselected dimensional stateandomly.
IV. Estimate path value§ ® , according tq8)[35].

0 @ p _ _ tuy  _ tU% 8)

V. Calculatep; (probability of selection the left path or the righ

path) andp; (probability of choosing a cell between theells
located on the path determine$g5).

-~ Do
oL Q(,OH—_'.
noow BN ©
B Q(.OHT—
, a plg
- DS
N QO\)HT
N ok R 10'
B Qor—(g— (10;
a_pit
i plth ht
where @ @ is cell value. Temperaturd creates tradeoff

between the exploration and exploitation.
VI. Calculate reinforcement signal according to (11),NigtNe+1,

and updateX%es (12)[35]

Lo p Qo QE € € Q¢ a Qk Hd QR N
I 0w n /DI OQI 0 (111
. AW QQd Qb £ & Q¢ & Qi ©Hid D N
® N P a2

® ETMI 0Q Q /
where,® ® Bk fohd B

VIl. Update cell value® @ s «
Q Q4 & 44—t
h

R

OOs. Nl dw | 80 S

13
Pl p_8 o _& (13

VIIl. Move action to the new cell with a step lengthaccording to
is selected, current dimensional stat

(14). When the0
wmoves tow ®
tow ® -

— and with the choice of) ,® moves

-, 1 0EtE; (14,

where, is distance (in the form of number of cells) between
the current celland the selected cell.
IX. Evaluate the cost functions.

X. Store the positions of the actions that represent no

XIV. end while

XV. end for

XVI. Use (15) to add perturbations to thendénsional states opest
, use (12) to updat®es, S€tNe=Nie+1.

NG Y i oBR O (15)

where Y isY i Q@880 ; ® ; andlis

I ow s, ®wQ s ; .The—israndom variable
—v - L Also,i "Q'®Eis a sign function.
XVII. end while

XVIII. return Paretcfront solutions

according to (13), where
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An Automated Design Simulation Tool of CMOS
Analog ICs Based on Circuit Intelligent Sizing for
Low-Power/LowArea Usingthe Proposed MOLA
Method

In this Section, an optimizath tool is proposed for
automated design of analog IC. It should be noted that
analog circuits are simulated by HSPICE simulator. Also,
MOLA and MO algorithms are performed in MATLAB. By
connecting MATLAB and HSPICE software, the
optimization process is dae (Fig.1). In the beginning,
design parameters and design specifications are
determined by the designer, while a reasonable
predefined range is also taken into account for each
design parameter. Note that desigramameters consist
of the length and width of the CMOS transistors,
capacitor values, and biasing currents.

— Start ) End J#==— Extract Final Variables ”

S

2

.E VBI

K Evaluation of Power

% I| and Transistor Area Tsikie

2 as Objective P g Check Stop Criterion
¥ i Repository

| Functions

3

5

vis ml
NO
|_ Check Constraint

Violation Variables Tuning
I MATLAB
spHle [ RennspiCE lis File
Input Output
t
HSPICE Simulator

Fig.1: The general structure of the automated circuit design
simulation tool based on the intelligent MOO.

Continue on this section, the desired amplifier
circuits, cost functions, the proposed indeaqnd Parete
front evaluation criteria are explained.
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A. Case Studies
In this paper, in order to show the performance of

C. Total Optimality Index (TOI)
In this paper, due to the diversity and multiplicity of

MOLA method in the design of analog circuits, twoqualitative indicators in the design problem, a total index

important amplifiers are used. A twstage CMOS op
amp was designed in 0.
ended foldedcascode ogg mp wi t h 0.
There are 13 design parameters in each circuit.

is presented that

2 5 \pptimizaton imatlod. oThiy indéicatal cam bes usadgtb e
1 8 y mvedigate htheo |perfprynance  of
optimization algorithm in the design problem. Therefore,

illustrates the success of the

the proposed

In Fig. 2, a twostage CMOS ofamp is shown with a criterion called total optimality index (TOI) is proposed.

miller. Design parameters in this circuit include
transistor widths and lengths, biasingurrent (piag,
compensation capacitanceCj, and load capacitance
(Q). Here, theappropriate matching relations are also
imposed as MEM,, Ms=M,, and Mi=Ms. Furthermore,
the positive power suppiWpp) and the negative power
supply ¥s9 are equal to 2.5V and2.5V, respectively
[18]. This circuit set values for thg and G_that provide
C>0.245 [16].

Fig.3 shows a singkended foldedcascode amplifier.
In this case, the biasing current, the total values of
transistor widths and lengths are considered as design
parameters. Here, the appropriate matching relations
are also imposed as MM, Mg=M;=Myp, Ms=Myp,
Me=M;, Mg=My, and M=M,,. Furthermore, the positive
power supply Vpop), the negative power supplyw{y, and
G are equal to 0.9\40.9V and 5pF, respectivelyg].

Desired specifications (smaignal  differential
voltage gain (DC gain), gdiandwidth product (GBW),
phase margin, output swing, common mode rejection

ratio (CMRR), and power supply rejection ratio (PSRR),

etc.) are in accordance withiable 2for both cases. Also,
some equations are consistent with the circuit according
to the following equation$18].

Tbias|

Vop
]bias _.lE M6
M3 | M4 c.
} { J_ O Vout
-o—[ Mi (o))
Vin :l:
+o —
| = I
ME I q_j M5 ||_,IM7
Vss

Fig.2: The twoestage CMOS eamp circuit (Case 1) 8].

Mpr}

MSIFl——|E|M4

vout

€L

S
_|_
—

Ves

Fig.3: The singleended foldedcascode ogamp circuit (Case 2)

[18].

Table2 : Desired characteristics of Case 1 and Case 2

o w 0
Q84 — (16)
® 0
0°Y0 @ @ Oi® i}
Ohiew 0 (17
00 @ Ooion 0
Ghie D (18)

where, dm; is the ratio of the drairsource voltage\(r9
to the saturated drairsource voltage @ of i-th
transistor (M), and OSPand OSNare the output swing
positive andoutput swing negative, respectively.

B. Cost Functions

Herein, inteligent methods are used to optimize the
two important and essential indicators of amplifier
circuits, namely power consumption and total area

MOSFETSs. This cost functions are considered as follows.

1 Minimizing power consumption
1 Minimizing the total area MOFETs

. o Constraint

Design spediation

Case 1 Case 2
DC gain (dB) 270 270
GBW (MHz) =2 =212
Phase Margin (deg) =50 255
Slew Rate (V/us) >21.5 210
Output Swing (V) > 2 —
CMRR (dB) 270 —
PSRR(dB) =70 —
PSRRdB) 270 —
dmy, dmg, dmg, dm, 51 2
dmg, dmy,
OSP (V) — 0.5
OSN (V) — -0.5
MOSFETs Saturation Saturation
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The TOhas been introduced to express the impact of Simulation and Analysis Results
the design specifications and the cost functions of the this section is divided into two subsections. In the

problem. The lower value of TOI represents Fhe MOT€rst subsection, the results and analysre presented in
favorable response. The index is definedfallows: the optimization of two circuits. All the results are

"YU O reported in the form of the values of cost functions,
BOobH (19) design parameters, design specifications, and TOI. The
85 hab best, worst, mean, and variance of the values of the cost
functions and he TOI are presented for proposed
where, Ais total area of the MOSFET in fiand Pis the ~ method in the best run. The integration index, Pareto
power consumption in mW (as the cost function€)is  front, and bode curve figures are also presented. The
design specifications (constrain)d Gsis specifications second subsection is organized by the qualitative and
boundary value in the problem of designing an amplifierquantitative analysis of the proposed MOLA approach. In
circuit. In (19), to balance the values of power and areaaddiion, the Pareto indexes and the runtime of MOLA
the amount of area is normalized between zero and oneperformance are analyzed in comparison with other
and due to the negativity of some of the designproposed algorithms in the best run. All
specificatims; the absolute values @and G are used.  implementations are performed in MATLAB 2016a
Also, with a mean less than a fractional value based oMathWorks and HSPICE2808.3 under a computer
this theory and dominant experimental results, the final system with Intel® Cof#® -#460U CPU @ 3.20GHz, 4GB
TOI was logarithmically considered. The most desirabl®AM, and Windows Enterprise 10. The vectors of design
TOI (minimum) is created by minimizing td@enctions  parameters that should be determined by the proposed
and maximizing the design specifications. The design dbols are as follows:
the TOI is such that the main focus is on the cost.,
functions of the problem and a minor improvement in . g we Feoy Fo 0RO FD D RO BB 18 RO (22)
one of them will minimize the TOI. The logarithm
coefficient of 20 is to increase th€OI sensitivity to a
partial improvement of the fitness values of the cost " ko Fo Fo Fo fo B R B R R D RO (23)
functions.
D. Paretofront evaluation criteria The cktails on design parameters for both cases are

In order to evaluate Paretfront. two criteria of the listed in Table 3. Also, all control parameters of the
overall nondominated vector generation (ONVG) and Proposed methods are presented Trable4.
spacing (SP) are used. Despite existence of other
criteria for studying the quality of the Parefoont, the

qrué Geéiar a aow

Table3: The range of design parameters

reason for choosing these two criteria is that there is no Desi Case 1 Case 2
esign
need to _know the reaIParetofront_ and they are paramgter Lower Upper Lower Upper
produced in accordance with the received Par&tont. bound bound bound bound
T ONVG: The WWVG represents the number of W (um) 5 40 0.24 200
optimally nondominated responses (based on L(um) 0.25 2 0.18 5
Paretofront) in a MOproblem[38]. Ioias (HA) 20 40 30 400
Ce(pF) 2 20 — —
00 OI0H O s (20, G (pF) ’ 15 - -

where, |PRnow is the number of vectors iPF,own
. A. Results and Comparisons for Case Studies
1 SP: The SP numerically represents the spread of the In order to demonstrate the ability of the

vec_tors mftheprﬁ;“’wf‘ and n:eas_ur(_ats the glstance reinforcement learning method to solve the problem of
variance of neighboring vectors in it (as (42} circuit optimization, the results are compared with

B d o . several intelligent methods and previousidies.
"YU = » (21 Table5 and Table6 show the best solution in the best
run of the algorithms for the case 1 and case 2 that is
where,Q aQeQw Qw NQMw Qo , generated by the best TOI (minimum). The bolded

"0 plcfB iE. Thedis the mean of altl, andn is the  respongs show the best values in terms of design
number of vectors in PFkmm (|PRaown |). SO that, Specifications, cost functions, and TOI. In Case 1, the
YO 1 means that all members are spaced evenly aparMOLA method is able to produce the lewea and low

in [38]. power with the values 72.825 pfmand 560.42 pW,
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respectively, and these values are created with the

Fig. 6 shows the Paretdronts in the best run (in

minimum values for design parameters such as biasingterms of TOI criterion) for the proposed algorithms. The

current, compensation

capacitance,

and

loadvariety and the number of presented Parefoont

capacitance. The algorithms intelligently set values forsolutions provide a wide range of selection for the circuit

the G and G that provide Cs>0.2Z5. Additionally, the

designer. MOLA responses have dominated Pafietiot

ability of the MOLA is more specific than other solutions of other algorithms. The HSPICE simulation
algorithms in the TOIl. According to the table, thisresults obtained from the optimally designed twap-

superiority, relative to the best Parefoptimal solution

amps are shown if¥ig.7 andFig.8 . Also, they shovthe

of algorithms, is achieved with 56.14%, 12.5%, 8.33%jalues of Gain DC, GBW, Phase Margin, and Gain Margin
and 25% by MOLA, MOPSO, MOIPO, and NISGAfor the MOLA in a solution which has the best TOI.

respectively.Table6 shows that from the point of view

A compréensive comparison between the results of

of area assessment, the MOLA method for Case 2 ithe proposed MOLA algorithm and those of other rival

superior to MOIPO, MOPSO and NSG&ith the values

of 67.45%, 65.25%nd 32.85%, respectively. The resultsstudies.

show that the MOLA method with the least power and
area can produce the best TOI with a value3#.1627.

methods is presented ifiables &and 9 along with other

According to these tables, the circuit optimization by
MOLA, compared to recent studies, has guwoed

Also,Table7 shows the statistical comparisons proposed favorable values of power with the smallest MOSFET

method.

The evaluation of the proposed strategy for improving
criterion and # power

the integrated circuit

size.

It can be said that an effective traddf between
optimized lowpower and lowarea in the results of the

consumptionin the best run (minimum TOI) for case proposed automata algorithm is more desirable.

studies is shown ifrig. 4andFig. 5

Table4: Contol settings

NSGAI MOPSO MOIPO MOLA

Total Rur20 Total Rur20 Total Rur20 Total Rur20
MaxltcaseF100  Maxltcase£100  MaxlicaseF100  Niemax caset2000
MaxXltcasez150  MaxXlteasez150  MaxXitcase150  Niemax casez3500
nPop=20 nPop=20 nPop=20 nRep-20
nRep-20 nRep-20 nRep-20 D=500

P=0.9 ¢=1.4962 ¢=0.1 k=50

P.=0.1 ,=1.4962 c,=3.05 | N mip

- ¢ w=1 shift;=100 _ ™

- p Y Wyam=0.73 shift,=300 _ N Tip

— NGritkaset4 scalg=0.03 N i

— NGritkasex10 scale=0.03 NGrictase=4

— | ™ NGrick,cet4 NGrickase>10
— Tt NGrick,sex10 | ™

— < (<) It

- - [ g

B. Performance Analysis

Tables 1614 report statistical
performance of the MOLA method in relation to the reported.
control parametes , D, and Ngmay ONn the cost

analysis of the implementation time and Paretfront criterion is

Finally, for the performance analysis of Pareto

functions and TOI in the best run (based on TOI valoe). indexes and runtime of MOLA with other assumed
Table 13, the effect of the MOLA parameters on the algorithms in the best runfablel4is provided.
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Table5: Optimal results of parameters based on thest solution for all methods (Case 1)

The best Paretsolution/method

Parameter
20/NSGAI 16/MOIPO 4/MOPSO 1/MOLA
Wo/L1=W5/L, (um/pm) 7.184/1.336 9.999/1.306 6.484/1.416 5.1041.654
Wa/Lz=W,/L, (Lm/pm) 19.7650.524 25.108/0.731 19.366/1.272 6.8130.537
Ws/Ls=Wg/Lg (LmM/pum) 12.408/1.055 15.825/1.408 13.649/1.26 9.221/1.479
Design We/Lg (Lm/pm) 24.5840.377 30.5480.341 33.489/0.548 25.988/0.735
parameter W5/L7 (um/um) 15.694/0.872 23.706/1.58 16.599/0.919 12.071/0.797
C.(pF) 9.748 12.635 10845 7.831
G (pF) 9.094 14.138 9.181 8.868
I bias (LA) 21.77966 27.981 23.889 20.037
DC gain (dB) 70.301 73.637 78.197 72.751
GBW (MHz) 2.525 2.328 2.091 2.110
Phase margin (deg) 55.102 50.164 54.470 50.596
Design Slew rate (V/us) 2.309 2.661 2.436 3.020
specification Output Swing (V) 2.412 2.327 2.355 2.306
CMRR (dB) 80.101 87.416 99.358 104.156
PSRRdB) 76.147 75.570 85.245 82.222
PSRRdB) 88.012 103.460 115.7 82.892
Area (unf) 119.513 155.260 135.632 80.199
Objective
Power consumtion(uW) 678.47 748.39 641.09 562.41
TOI -19.7231 -16.7304 -20.2187 -25.5832
Table6: Optimal results of parameters based on the best solution for all methods (Case 2)
Parameter The best Paretsolution/algorithm
1/NSGAI 14/MOIPO 7/MOPSO 1/MOLA
W,/L; (Um/um) 22.46/0.858 80.009/3.440 55.645/1.608 13.27/0.515
WSa/Ls (Um/um) 76.544/0.504 49.7130.351 116.105/0.396  84.054/0.322
Design Ws/Ls (Um/pm) 67.766/1.134 120.010/2.110 104.32/2.863 19.103/0.57
parameter We/Lg (UM/pm) 5.21/1.691 6.254/2.449 10.793/2.859 0.619/0.467
Wes/Lg (UmM/um) 19.846/0.842 42.714/1.222 88.313/2.606 18.057/0.732
Wi o/Lio(Hm/pum) 28.56/1.068 79.343/2.021 59.278/2.962 16.9561.347
I bias (MA) 61.519 57.283 54.997 50.491
DC gai (dB) 75.881 80.588 82.502 70.782
GBW (MHz) 15.507 13.777 13.215 12.538
Phase margin (deg) 82.067 70.049 60.925 83.077
Slew rate (V/us) 12.209 11.423 10.973 10.098
dm; 11.906 10.200 12.479 14.480
Design dms 2.499 3.077 3.316 2.739
specification dmg 4,106 4.286 3.807 4.0319
dmg 1.644 1.679 2.138 1.514
dmg 2.895 2.943 2.084 4.564
dmyo 5.032 5.721 4.952 3.664
OSP (V) 0.620 0.654 0.635 0.576
OSN (V) -0.567 -0.563 -0.607 -0.555
Area (unf) 20.494 39.600 42.277 13.760
Objective :
J Power consumption ;77 3¢ 256.54 244.290 221.07
(W)
TOI -29.1398 -23.535 -23.0556 -34.1627
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Table7: Total statistical comparison of objectives and TOI for MOLA (Case 1 & Case 2)

MOLA Case 1 Case 2
Area(unr) 72.825 13.759
Best Power consumptiofuW) 560420 214.150
TOI -25.583 -34.163
Area(um?) 81.563 14.924
Worst Power consumptiofuW) 650.350 221.070
TOI -24.0644 -33.848
Area(um?) 75.499 14.458
Mean Power consumptiofuW) 625.590 215.064
TOI -25.0644 -33.848
Area(um’) 6.663 0.084
Variance Power consumptiofuW) 857.920 2.641
TOI 0.0432 0.026
Case 1
200
&E“ 150 BEMOLA
% 100 & MOIPO
< 50 ' l II I I I & MOPSO
0
12 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 18 19 20 BNSGA-II
Solution of Pareto-front
(a)
Case 1
= 2000
2
= 1500 EMOLA
£ 1000
& &MOIPO

(b)

Mean Area for Case 1
MOLA

NSGA-IT
26%

MOPSO
27%

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Solution of Pareto-front

31%

EMOLA ®mMOIPO mMOPSO mNSGA-II

(c)

MOIPO

T eviorso

18 19 20 MNSGA-II

Fig.4: Evaluated area and power consumption in casel, (a): Area, (b): Power consumption, (c): Integration percentage.
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Case 2

£30
g 20
< 10 I
0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Solution of Pareto-front

(a)
Case 2

=
0
%200
& 100
0
1 2 3 4 5 6 7 8 9 10 I1 12 13 14 15 16 17 18

Solution of Pareto-front
(b)

Mean Area for Case2

MOLA

NSGA-II 12%

19%

MOIPO
34%
MOPSO
35%

EMOLA mMOIPO mMOPSO mNSGA-II

(©)

Fig.5: Evaluated area and power consumption in case 2, (a): Area, (b): Power consumption, (c): Integration percentage.

Table8 : Comparisorwith other methods (Case 1)

19 20

19 20

EMOLA
AMOIPO
EMOPSO
#NSGA-II

BMOLA
&MOIPO
EMOPSO
#NSGA-II

GSAPSO AGSA_PSO+PF
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PSql4 o 07 COGSA18] NSGAI MOPSO MOIPO MOLA
Technology(um) 0.35 0.35 0.25 0.25 0.25 0.25 0.25 0.25
DC gain (dB) 42 7543  70.441 74785  71.024 79.296 7563  73.808
GBW (MH2) — 5776  2.017 2.644 2651 4.049 2340  2.127
Phase margin (deg) 83.8 66.2 50.181 78.448 58.471 59.140 56.21 60.616
Slewrate (V/us) ~ 22.4 1088 2231 10.897 2326 4567 2668  3.023
Output swing (V)  — — 2.415 2.232 2413 2364 2371 2343
CMRR (dB) 842 87 88.187 78.040 108.906 108.677 87.416 104.156
PSRRdB) 401 832 72.675 87.190  76.403 86.172 83.413 82.530
PSRRdB) 68 1104  131.910 86.650  88.421 121.630 103.460 95.485
Area (urf) 296 109.6  210.003 129.845  99.042 100.285 122.13 72.825
Fp%‘(l")er consumption ;o645 7128 700710 349.420  582.670 565.930 748.390 560.420
TOI 3.0968 -17.52  -8.1609 12,3958  -19.7231 -20.2187 -16.7667 -25.684
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Casel

Case2
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Fig.6: Paretefront of the MOIPO, MOPSO, NSIE/Aand MOLA(@@): Case 1, (b): Case 2.
Case 1
100.0 MOLA
— GBW: (2.1101meg, 0.0) MOIPO
< Galo_Max: (1.0, 72.751) —_——
o 7
i . e MOPSO
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Fig.7: Bode diagram plotted by the proposed methods in case 1.
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Gain (dBV)

Phase (deg)

Case 2
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T MOIPO
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Fig.8: Bode diagram plotted by the proposed methods in case 2.

Table9: Comparison with other methods (Case 2)

GENOM ~ FRIDGE AGSA_PSO+PF] NSGAI  MOPSO MOIPO  MOLA

[13 [18]
Technologyum)  0.18 0.18 0.18 0.18 0.18 0.18 0.18
DC gair(dB) 70.610 70.00 70.427 76,637 85349  81.233  70.782
GBW(MH?z) 15.350 16.00 15.505 15507 16359 18176  12.538
Phase margitdeg) ~ 79.60 80.60 83.574 82.067 68032  70.049  83.077
Slew rate (V/us)  15.360 15.300 10.001 12212 15400  16.862  10.098
dm, 9.245 9.780 15.067 13310 13213 12613 16571
dms 1.568 5.200 2.419 2.499 378 3.257 2.739
dmg 1.836 2210 5.540 4.138 3.970 4791 5.638
dme 8.171 10.500 2.217 1.971 3.216 3.584 1513
dme 2.807 3.050 2.220 2.895 2.378 2.943 4.564
dmyo 1.653 1.950 11.709 5.032 5.818 5.721 3.664
OSP (V) 0.566 0.625 0.695 0.620 0.647 0.654 0577
OSN (V) -0.505 -0.502 0.641 0606  -0.676  -0.697  -0.556
Area (urf) 16.870 23.710 16.961 20494 34500  37.439  13.760
?“c:/‘(/")er consumption 14 60 233.30 222.10 270.73 23661  227.47  214.15
TOI 317005 -29.3704  -32.9950 291398 -23.0556 -23.535  -34.187
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Tablel0: Comparison of the effect d&fon objectives and TOI (Case 2)

(D=500,Nerma=3500)

MOLA k=4 k=10 k=50 k=100
Best 28.817 21.4678 13.760 14.6994
Worst 28.949 21.5047 14.925 16.8876
Area (unf) Med 28.852 21.483 14.449 16.5030
Mean 28.846 21.4827 14.458 16.2131
Variance 0.0008 0.0001 0.0840 0.5101
Best 427.040 307.180 214.150 247.870
Power Worst 427.110 307.310 221.070 268.920
consumption (uW) Med 427.090 307.230 214.770 253.060
Mean 427.094 307.237 215.064 257.799
Variance 0.0002 0.0016 2.963 49.0146
Best -22.131 -27.252 -34.424 -32.044
Worst -22.091 -27.241 -33.835 -30.944
TOl Med -22.120 -27.249 -34.137 -31.089
Mean -22.122 -27.248 -34.119 -31.220
Variance 7.8698E05 8.9966E06 0.0249 0.1314

Tablell: Comparison of the effect @ on objectives and TOI (Case 2)

(=50, Niemar=3500)

MOLA

D=100 D=500 D=1000 D=2000
Best 14.894 13.760 19.503 26.802
Worst 15.755 14.925 21.246 27.233
Area (unf) Med 15.438 14.449 20.454 26.990
Mean 15.426 14.458 20.4190 27.004
Variance 0.057 0.0845 0.2522 0.0152
Best 228.420 214.150 221.9700 483.570
Power Worst 230.380 221.070 223.1100 485.290
consumption Med 228.620 214.770 222.18 484.850
(HW) Mean 228.847 215.064 222.3171 484.619
Variance 0.3689 2.963 0.1490 0.2940
Best -33.182 -34.424 -31.151 -20.951
Worst -32.595 -33.835 -30.381 -20.584
TOI Med -32.836 -34.138 -30.705 -20.716
Mean -32.834 -34.119 -30.739 -20.732
Variance 0.0247 0.0249 0.0506 0.0186

Tablel2: Comparison of the effect dna0N Objectives and TOI (Case 2)

MOLA (k=50,D=500)
Niemax=1000 Niemax=3500 Niemax=5000 Niema=10000
Best 12.333 13.760 14.274 12.972
Worst 15.106 14.925 15.463 13.429
Area (prﬁ) Med 13.1®% 14.449 14.734 13.388
Mean 13.171 14.458 14.872 13.348
Variance 0.5778 0.0845 0.1486 0.0138
Best 281.180 214.150 238.260 219.090
Power Worst 288.690 221.070 240.270 219.790
consumption Med 286.780 214.770 239.355 219.130
(HW) Mean 286.116 215.064 239.255 219.192
Variance 6.5233 2.963 0.3855 0.0339
Best -33.334 -34.424 -33.247 -34.955
Worst -31.274 -33.835 -32.503 -34.641
TOI Med -32.674 -34.138 -32.943 -34.671
Mean -32.634 -34.119 -32.866 -34.697
Variance 0.2931 0.0249 0.0586 0.0065
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Tablel3: Comparison of the effect ¢€ D, Niemax0n SP, ONVG, and Time

MOLA SP ONVG TIME (s)

k=4 0.0330 20 2608.91
D=500

k=10 0.0161 19 2610.70
Neemax3500

k=100 0.2786 13 2744.20

D=100 0.3349 20 2594.60
k=50

D=1000 0.1148 17 2589.50
Negwaz 3500

D=2000 0.1989 14 2630.45

Nrema=1000 1.2421 10 570.74
k=50 Nrema=5000 0.2052 20 3831.57
D=500 Nremax=10000 0.0575 13 7780.37

Nremax=3500 0.0420 16 2508.90

Tablel4: Performance analysis of Panéhdexes and runtime for MOLA with other proposed algorithms

Case 1 Case 2
NSGAI MOPSO MOIPO  MOLA NSGAI MOPSO MOIPO  MOLA
SP 70.107 605 3.247 8.024 1.506 39.353 8.978 0.034
ONVG 20 7 16 20 20 8 15 16
TIME (s) 1248 1436 1456 1188.86 2528 2472 2419 2508.9
Conclusion Abbreviations

In this paper, an intelligent design simulation tool was] ©

proposed to optimize CMOS @mps. It was inferred /| ®'Qi ©

from the results that the MOLA is suitable for creating a

good tradeoff between cost functions. In addition, it 'QO Qi 0

establishes the qualitative and  quantitative
characteristics of the circuits. The final evaluation©
indicated that MOLA is superior to other competitors. ©
This method can be developed for optimal design0
domain of other analog and digital integrated circuits in %6of
the future. Also, the proposed method can be improved
for designing more complex circuits with intense design
specifications. P
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Inertia weight

Personal best position particlien
iteration t

Global best positioni in the d-th
dimension

Gognitive parameter

Social parameter

The unit step function

Angle between thea-th ball andj-th
ball ind-th dimension

Maximum iteration

Probability of selection the left patr
or the right path

Probability of choosing a cell
between thek cells located on the
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Cell value

Step length
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Output swing psitive
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the problem of designing an
amplifier circuit

ONVG Number of optimally non

dominated responses
SP Spacing metric
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