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 Background and Objectives: Routing and data aggregation are two important 
techniques for reducing communication cost of wireless sensor networks 
(WSNs). To minimize communication cost, routing methods can be merged 
with data aggregation techniques. Compressive sensing (CS) is one of the 
effective techniques for aggregating network data, which can reduce the cost 
of communication by reducing the amount of routed data to the sink. Spatio-
temporal CS (STCS), with the use of spatial and temporal correlation of 
sensor readings, can increase the compression rate in WSNs, thereby 
reducing the cost of communication.  
Methods: In this paper, a new method of STCS technique based on the 
geographic adaptive fidelity (GAF) protocol is proposed which can effectively 
reduce the communication cost and energy consumption in WSNs. In the 
proposed method, temporal data is obtained from random selection of 
temporal readings of cluster head (CH) sensors located in virtual cells in the 
clustered sensors' area and spatial data will be formed from the data 
readings of CHs located on the routes. Accordingly, a new structure of 
sensing matrix will be created.  
Results: The results of proposed method show that the proposed method as 
compared to the method proposed in  [29], which is the most similar method 
in the literature, reduces energy consumption in the range of 22% to 43% in 
various scenarios which were implemented based on the number of required 
measurements at the sink (M) and the number of measurements in the 
routes (ά ). 
Conclusion: In the proposed method, based on spatio-temporal CS (STCS), a 
new structure of sensing matrix is created that can increase the compression 
rate, thereby reducing the communication cost in the WSNs.  
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Introduction 

The limitation of energy resources in the sensors is the 

main challenge in implementing wireless sensor 

networks (WSNs). Data aggregation and routing are two 

basic methods to reduce communication cost and 

energy consumption. Routing methods can be merged 

with data aggregation techniques to minimize energy 

consumption in the network. Recently, various 

applications of compressive sensing (CS) have been 

proposed for data aggregation in WSNs, suggesting that 

CS can reduce communication cost and results in 

network lifetime increase CS introduces a structure for 

development of methods for aggregation of correlated 

data in multi-hop WSNs  [2],  [3]. 

In most of CS techniques, only the spatial readings of 

the sensors and their correlation are used to compress 

the sensor readings. In other words, spatial correlation 

of data read by sensors located in different places of the 
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network is used to compress signals that have been read 

in a given time slot. While data read by any sensor in a 

sampling period, which includes multiple time slots, can 

also be correlated (temporal correlation). In addition, 

another concept of sensing based on spatio-temporal 

correlation was introduced. The physical phenomena 

sensed by a WSN often shows compressibility in both 

space and time domains. The sensory data in a WSN 

from natural phenomena generally exhibit correlations 

in both spatial and temporal (spatio-temporal) 

domains  [4]. The concept of spatio-temporal sensing in a 

sensors' area is shown in Fig. 1. Several studies have 

shown that the sensors observations are both spatially 

and temporally correlated. Typically, the observed 

sensor readings of natural phenomena have both 

temporal and spatial dependency. Spatial and temporal 

correlations along with the collaborative nature of WSNs 

bring significant potential advantages for the 

development of efficient communication protocols well-

suited for the WSN paradigm. In general, the 

improvement of data gathering approaches that are 

based on CS in WSNs is originated from three aspects: (a) 

the improvement of the reconstruction algorithms of 

compressive sensing signals; (b) the production of the 

transformation base matrices; and (c) the production of 

the sensing matrices. In this paper, we propose a 

method for improving the sensing matrix. Moreover, 

routing techniques are also used to reduce energy 

consumption in WSNs. The communication cost in a 

WSN is the main source of energy consumption  [5] and is 

a serious challenge in designing routing protocols  [6],  [7].  

In general, the improvement of data gathering 

approaches that are based on CS in WSNs is originated 

from three aspects: (a) the improvement of the 

reconstruction algorithms of compressive sensing 

signals; (b) the production of the transformation base 

matrices; and (c) the production of the sensing matrices. 

In this paper, we propose a method for improving the 

sensing matrix. Moreover, routing techniques are also 

used to reduce energy consumption in WSNs. Routing 

protocols can be categorized in two general types: flat 

routing and hierarchical routing (or clustered routing). In 

the flat type, all nodes have the same function and send 

data to the sink in multi-hop paths.  

In the hierarchical routing protocols, sensor nodes are 

distributed in clusters and a sensor node is selected as 

cluster head (CH) node in each cluster. The task of 

sending data to the sink is performed by the CH nodes. 

In large-scale WSNs, it is recommended to use 

hierarchical routing methods  [8]. In the clustered routing 

protocol, sensors know their geographic locations with 

the help of GPS-like equipment which is embedded in 

them. Consequently, these protocols also refer to 

geographic routing protocols. 

 
 

Fig.1: Concept of the spatio-temporal sensing. 

 

In the geographic routing protocols, sensors are 

addressed by their geographic locations. Moreover, 

sensors use their geographic location to determine the 

distance to other neighbors which can use them as a hop 

sensor in the route  [9]- [11]. 

Geographic adaptive fidelity (GAF)  [12] is one of the 

most well-known geographic routing protocols. In the 

GAF protocol, the sensors area is divided into square 

virtual cells. In this protocol, each sensor in each cell can 

communicate with sensors in its four neighboring square 

cells (horizontally and vertically). In GAF, the size of 

square cells is defined in such a way that the farthest 

sensors in the adjacent cells can communicate with each 

other depending on the sensor range (R). In this 

protocol, only a sensor in each cell is selected as the 

active sensor and the radio of the remaining sensors 

goes off in order to save energy in each sampling period. 

Selected sensors in the cells are basically CH sensors that 

are responsible for sending data and routing to the sink. 

Due to the limitations of the GAF protocol, which allows 

sending data only in two vertical and horizontal 

directions in square cells, another version of the GAF 

which is called diagonal GAF (DGAF) was proposed  [13]. 

In DGAF, sensors in two adjacent diagonal cells can also 

communicate with each other. In this paper, we propose 

a new spatio-temporal CS (STCS) method for aggregating 

data based on the GAF protocol. 

In this proposal, similar to DGAF, we first divide the 

sensors area into virtual squared cells and then lay the 

sensors area based on the cells locations to improve the 

routing. In each sampling period, only one sensor of each 

cell will be selected as the CH sensor. Data read by CHs 

are compressed at various time intervals based on the 

proposed STCS technique and then this data is sent to 

the sink based on a routing algorithm. 

The continuation of this article is as follows: In the 

second section, theoretical foundations of CS theory will 

be discussed and in the third section, we will review the 

related works. The proposed method will be presented 

in the fourth section. In the fifth section, the proposed 
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method will be evaluated and in the last section we will 

conclude the proposed method. 

Compressive Sensing 

A.  Spatial CS 

Based on the CS theory, instead of sending N sensors 

readings to the sink, the sink will only require M 

compressed measurements which M is much smaller 

than N   [14]-  [16]. To explain the CS theory, consider a 

sensor network with N sensor nodes. If ὼ is the vector of 

the spatially reading signals of N sensors in a sampling 

period and ɰ is a suitable transformation base, then the 

vector ɻ2צ , which is a sparse signal, can be obtained as 

ɻ ɰὼ. But the ɻ vector length still remains equal to 

the number of network sensors (N). If we consider the 

matrix ɮ2צ  as the measurements matrix in the CS 

technique, then i-th column in this matrix belongs to i-th 

sensor (‰) in the network. In this case, each sensor 

multiplies its spatial reading (ɻ) by the vector of its own 

column (‰). Thus, the set ώ ɻ
 
‰ will be generated 

for all sensors in which ɻ is the data read by the i-th 

sensor and ‰ is the i-th column of the matrix ‰Ȣ If all 

sensors send their ώ values to the sink, then the vector 

ώ ɻɮ will arrive at the sink. The length of y is equal to 

M, which is less than the sparse reading vector of the 

sensors (x). So, less energy will be used to send data to 

the sink. The sink can easily recover the reading data 

vector (x) from the measurements vector (y)  [17]. Using 

the method of minimizing l1-norm  [14],  [18]- [20], or 

other recovery methods such as the orthogonal 

matching pursuit (OMP) algorithm  [21], the original 

vector (x) can be obtained from the vector of 

measurements (y). However, there are two basic 

conditions for the Ψ and ɮ matrices which play 

important roles in the stable recovery of the compressed 

signal. These two conditions are as follows: (a) the 

restricted isometric property (RIP) for the matrix 

ὃ  [16],  [22],  [23] and (b) the mutual coherence between 

the Ψ and Φ matrices  [16],  [22],  [24]. The matrix ! is 

defined as: ! ɰɮᶰᴙ   [20],  [25]. To implement 

the CS technique, ὓ must follow 

ὓ ὅȢὯȢÌÏÇὔȢʈ ɮȟɰ   [24] where C is a constant 

value greater than 1, Ὧ is the sparsity and ʈ ɮȟɰ  is the 

coefficient of coherence between ɮ and ɰ matrices. 

B.  STCS 

To describe the STCS technique, assume that the 

ὢצᴙ   signal represents a two-dimensional signal 

which includes T data read at Ô time slots ρ ὸ Ὕ by 

N sensors in each sampling period. If i represents any of 

sensors Ὥצὔ , then (t,i)-th input of the signal ὢ 

represents the t-th data read by the i-th sensor. It can be 

shown that the ὢ signal in the form of 

ὢ ὼȟὼȟȣȟὼ
 
 in which the columns 

ὼצᴙ represent the data read by i-th sensor in T 

sampling period. We can also show ὢ as ὢ

ὼȟὼȟȣȟὼ  where, ὼצᴙ  represents the data read 

in a time slot t, (1≤ t ≤T) by all the sensors. It is assumed 

that ὢ has spatio-temporal correlation. We assume that 

there is suitable transformation base in spatial and 

temporal domains which ὢ has a sparse representation 

on them. These transformations can be represented in 

spatial and temporal domains by ɰצᴙ  and 

ɰצᴙ  , respectively. Therefore, each vector of data 

(the data read by all sensors at time slot t), namely 

 ὼ Ƞ ὸ ρȟςȟȣȟὝ has a sparse representation as 

ὼ ɰɻȟ in which ɻȟצᴙ
  is the transformation 

coefficients in the spatial domain.  

With the accumulation of coefficients as ɻ

ɻȟȟɻȟȟȣȟɻȟ , the transformation of 8 in the spatial 

domain can be represented by ὢ ɰɻ. It means 

that: 

ὼȟὼȟȣȟὼ ɰ ɻȟȟɻȟȟȣȟɻȟ                             (1) 

Similarly, ὼ will have a sparsity representation as 

ὼ ɰɻȟ, where ɻȟצᴙ
 is the transformation 

coefficient in the temporal domain. By the definition of 

ɻ ɻȟȟɻȟȟȣȟɻȟ , the transformation of ὢ in the 

temporal domain can also be represented by ὢ 

ɰɻ or: 

ὼȟὼȟȣȟὼ ɰ ɻȟȟɻȟȟȣȟɻȟ                           (2) 

The Kronecker sparse bases can combine different 

patterns of correlation in two dimensions to form a 

matrix  [26]- [28]:   

ɰ ɰ ṧɰ ᴙצ                                                    (3) 

Due to the irregular distribution of sensors in the 

sensors area, ɰ  and ɰ  can be constructed using 

Laplacian graph vectors and discrete cosine transform 

(DCT), respectively  [29]. In the conventional methods of 

STCS, the compressed measurement of the spatial 

readings of sensors in time slot t is shown by ώᴙ   

where  ὓ is the size of measurements vector ὓ ὔ . 

The measurements vector can be represented by 

ώ ‰ὼ  where  ‰ᴙ    is a matrix with ὓ   rows 

and ὔ columns. Considering all time slots in a sampling 

period (T), we can define the sensor matrix ɮ as a 

diagonal-block matrix as follows  [30]: 

ɮ   
‰   
 Ệ  
  ‰

 ᴙ                                         (4) 

As a result, the general vector of measurements is 

defined as ώ ɮ ὼ
 where ώ ώȟȣȟώ  ᴙ   

represents the measurement vector and  ὓ В  ὓ  

represents the total number of measurements involved 

in the STCS process during a sampling period T. Given 

the compression capability of the spatial domain, we can 

obtain the multi-dimensional signal X by solving the 
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recovery problem using conventional decoding methods 

in CS technique. One can get any ὼ Ƞ ὸ ρȟςȟȣȟὝ from 

the measurements separately by the following Eq.  [26]: 

ȟḊ ὥὶὫάὭὲ   
        ίȢὸȢ     ώ ‰

 
ɰ 

          (5) 

As a result, we can write ὼ ɰȟ.  

Related Works  

Various CS-based data gathering methods have been 

proposed for data aggregation in WSNs. In some of these 

works, routing methods are implemented based on 

clustered routing protocols and in others, routings are 

presented based on tree- based routing approaches. 

Some studies have shown that clustered routing 

methods have better performance than tree-based 

routing algorithms in terms of energy consumption and 

traffic load balancing  [30]. In  0, a CS-based data 

aggregation method with a random walk-based routing 

algorithm (which is a tree-based routing) was suggested 

in order to reduce communication cost. In  0, the CS-

based data was routed based on random routes called 

random walks. In addition, a method was presented 

using a CS technique and graph theory in which random 

measurements were aggregated by random walks. The 

random sensing matrix in this method was defined by 

random walks. Similar to, a method was proposed for 

data aggregation based on CS with a binary sensing 

matrix in  [29], where random walk and random sampling 

were used jointly in a clustered network. That sensing 

matrix as a structured matrix was an unbalanced 

expander graph adjacent matrix (UEG-AM) if the 

following parameters were selected correctly: (a) 

random walk length; (b) random sampling probability; (c) 

number of measurements; and (d) number of clusters. 

In  [32], a method called neighbor-aided compressive 

sensing (NACS) was proposed in which data aggregation 

was performed using a STCS-based method. In this 

method, the sensor nodes only send the rows of data of 

their temporal readings to the randomly selected 

neighbor sensors in each sampling period. Then, the 

sensor measurement which was produced by the 

neighboring sensor was sent directly to the sink. Sensing 

matrix in this method was also produced on this basis. 

In  [29], a data aggregation algorithm was proposed 

based on random sampling and random walk-based 

routing in the spatio-temporal domain. In  [29], the UEG-

AM [31] has been also used as the sensing matrix. In 

many CS-based proposed methods in WSNs, tree-based 

routing algorithms were employed. It has been shown 

that clustered routing methods show better 

performance than tree-based routing algorithms for 

energy consumption and traffic load balancing [30].  

In  [33], the authors exploited the mobility pattern for 

spatio-temporal mobile data gathering method by 

employing an improved random walk algorithm for a 

"mobile sink" to collect data from a sensors area. The 

proposed scheme in  [33] exploited Kronecker 

compressive sensing (KCS) for spatio-temporal 

correlation of sensory data by allowing the mobile sink 

to gather temporal compressive measurements from a 

small subset of randomly selected nodes along a random 

routing path. Authors in  [34] proposed an adaptive 

sampling method based on spatio-temporal correlation 

of sensor readings for clustered WSNs. In  [34], a 

clustering method according to spatial correlations of 

sensor nodes was proposed. In addition, sensors area 

was divided into clusters so that each CH kept a 

prediction model for sensors reading data which was 

derived from historical data in the temporal domain. In 

this method, redundant data transmission was reduced 

by adjusting temporal sampling frequency. Some sensor 

sets were selected within each cluster following intra-

cluster correlation, and only one collection was needed 

to be activated at each sampling round time. Sensors 

reading data of non-sampler can be substituted by those 

of sampler due to strong spatial correlation between 

them. In  [35], the authors proposed a hierarchical 

adaptive spatio-temporal data compression (HASDC) 

method. The method proposed in  [35] explores the 

temporal correlation of sensory data by employing the 

discrete cosine transform (DCT) and adaptive threshold 

compression algorithm (ATCA). The CH explores the 

spatial correlation among the compressed temporal 

readings by utilizing discrete wavelet transform (DWT) 

and ATCA. The proposed method in  [35] combines three 

techniques including: (a) data sorting; (b) ATCA; and (c) 

spatio-temporal data gathering method. At the same 

time, according to the correlation of sensory data and 

the adaptive threshold value, the compression ratio can 

be adaptive-controlled. In  [36], for improving the 

accuracy of reconstructed data, a method based on 

weighted spatio-temporal compressive sensing was 

proposed. In the proposed method in  [37], the sensors 

area was clustered and in order to reduce the temporal 

redundancy. In addition, dual prediction was used in the 

intra-cluster transmission and hybrid compressive 

sensing (HCS) technique was employed for reducing the 

inter-cluster spatial transmission redundancy. 

Proposed Algorithm 

A.  Network Model 

We have some assumptions in our model:   

I) Impact of packet loss during data transmission is not 

considered, since it can be handled at the lower layer. 

II) Only energy consumption due to communication 

processes is considered. The energy consumption of 

computation processes depends on the type of sensor 

node; so, it is neglected. In general, it is noted that in a 
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typical WSN, energy consumption during data 

acquisition (sensing) and signal processing depend on 

the type of sensor nodes; so, this work only considers 

energy consumption during communication between 

sensors.  Moreover, communication between sensors 

has the highest energy consumption in WSNs. 

Transmitting and receiving signals consume about two-

thirds of the total energy in a typical sensor. So, we only 

consider energy consumption during the transmitting 

and receiving data packets in this paper. 

In our proposed model, the sensors are distributed 

uniformly and randomly in a square region. Similar to the 

DGAF, we divide the sensors area into equal virtual 

squared cells, so those sensors in adjacent cells (in 

addition to vertical and horizontal directions) can also 

communicate in a diagonal direction. In this model, the 

sink is located at the center of the sensors area. In this 

paper, we use the geographic sink placement (GSP) 

strategy for sink placement in the sensors area. In GSP, 

sink is placed at the center of gravity of an area. The GSP 

strategy is intended for uniformly distributed networks 

when there is no information about sensor nodes' 

locations. In this paper, the sensor nodes are distributed 

uniformly in sensors area based on the network model, 

so our strategy is same as GSP. The sink placement at the 

center of gravity gives pretty good results for uniform 

node distributions. For applications whose nodes are 

uniformly distributed, GSP is a good option in order to 

minimize the delay. Furthermore, GSP strategy is 

obviously very computationally efficient. In many 

researches in the field of WSNs, the sink is located at the 

center of sensors area. 

In order to reduce energy consumption in the 

network, similar to the GAF protocol, one of the sensors 

in each cell was randomly selected as an active sensor 

(CH sensor) at each sampling period. Each sampling 

period (T) is divided into equal time slots (t). The CH 

sensors read and record the environmental data in time 

slots (1≤ ǘ Җ¢). Since both spatial and temporal readings 

of the sensors in the time slots and sampling period may 

be correlated, it is possible to aggregate the data 

recorded in the CH sensors based on the STCS technique. 

The proposed routing algorithm in this paper is 

implemented based on the geographic location of the 

sensors. In this model, each cell has an address in the 

form of C ()ȟ*), where,  - ά )ȟ* ά and m= 
Ѝ

. ὃ and 

ὶ are introduced in Tables 2 and 3, respectively. 

To reduce the energy consumption in WSNs, various 

routing protocols have been introduced by the 

researches. Furthermore, based on the network 

structure class, routing approaches are divided into flat 

and hierarchical protocols. In the flat routing (similar to 

the routing method which is proposed in  [29] (random 

walk routing), all sensor nodes cooperate with each 

other through multi-hop routing. In this type of routing, 

nodes have the same role. On the other hand, the 

hierarchical routing is classified into two categories: 

cluster-based and grid-based clustering techniques. Fig. 

2 shows the proposed network model. In order to 

improve the routing, we lay the cellular sensors area. In 

Fig. 2, cells in different layers are shown in different 

colors. The lowest layer is the closest layer to the sink 

which is considered as the first layer. In proposed model, 

there is a routing constraint by which routing is 

implemented only from the higher layer to the lower 

one. Therefore, if CH sensors are located in the diagonal 

cells of the sensors area, there is only one path to send 

data from the higher layer to the lower one. If the CH 

sensors are located in non-diagonal cells, depending on 

which cells they are located, there are 2 or 3 paths from 

higher layer to the lower one. The decision to select a CH 

from 2 or 3 candidate cells is based on the shortest 

distance of the candidate cells. In other words, the CH of 

candidate cells is chosen as a relay sensor which has a 

lower distance with the source sensor. This process is 

shown in the routes of Fig. 2. The routes with solid lines 

are implemented routes and dashed lines are candidate 

routes that are not selected due to more distance to the 

source sensor. In summary, the effects of clustering in 

our results are as follows: (a) simplification of the node 

management; (b) reduction of energy consumption; (c) 

achieving scalability; and (d) improving load balancing, 

robustness and data aggregation. 

B.  Data Gathering 

In a sampling period (T), a sensor will be randomly 

selected as a CH sensor in each cell. The CH sensors will 

read the environmental data temporally in t time slots. 

In a sampling period, a number of R routes are 

implemented in the cellular network. Temporal data is 

gathered based on temporal readings of CH sensors in t 

time slots, and spatial data is gathered based on CH 

readings on the routes. This process can be described as 

follows: According to the CS theory, assume that the sink 

requires M measurements to accurately recover the 

temporally read signals by the CHs. In addition, assume 

that R routes are generated in each sampling period. 

Therefore, ά  measurements will be performed in each 

route such that M=2ά . 

To explain how to compress and send compressed 

data to the sink, consider r-th route. Assume that the 

length of this route (the number of hops) is equal to h 

(Fig. 3). If the temporal data is represented by ὼ, then 

the temporal data read by the first sensor in the route 

(source sensor ὲ) can be given by ὼ ᴙצ . Now the 

compressed measurement of the temporal readings of 

the sensor Î in a time slot can be shown as ώ

‰
 
ὼ  where ώᴙ  and ά  is the length of the 

measurements on the r-th route ά Ὕ.  
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Fig. 2: Network model in the proposed method (a 5-layer 

sensors area with 100 square cells and 300 sensors). 

 

 
 
 
 
 

 
Fig. 3:  Data aggregation in r-th route with h hop sensors. 

 
In this relation, ‰ ᴙ   is the measurement 

matrix with The matrix elements ‰ are represented by  

‰ȟ with the values of 0 or 1. If ὲ temporal readings are 

shown by ὼ ȟ, then we can select a number of temporal 

readings ὼ ȟ randomly with probability of Ñ. In general, 

for i-th sensor in r-th route, the elements of the matrix 

‰  can be defined as  [29]: 

‰ȟ
ρȟ   ύὭὸὬ ὴὶέὦὥὦὭὰὭὸώ έὪ ή         
πȟ    ύὭὸὬ ὴὶέὦὥὦὭὰὭὸώ έὪ ρ ή

                          (6)  

The sensor ὲ will relay its compressed data (ώ) to the 

next hop sensor in the route (i.e., sensor ὲ). As before, 

the vector of compressed measurements in the sensor 

ὲ will be generated as ώ ώ ‰ ὼ where ‰ ὼ  is 

the vector of Î compressed data. The sensor ὲ will 

send the total sum to the next sensor on the route. So, 

all the sensors in the route send their data to the sink 

(Fig. 3). Finally, after h hop counts, the data will arrive at 

the sink. Consequently, the vector of measurements (ώ) 

in the r-th route will be ώ В ‰ὼ.  In this case, 

the number of transmitted data packets in the route is of 

the order of ὕάὬ  [18]. When all the routes (R routes) 

in the network run such a CS data gathering approach, a 

measurement vector as ώ ‰ὼ  is created. The sensing 

matrix ‰ᶰᴙ    has R rows and  ὔ   columns. Here 

we describe the structure of the matrix ‰ by an example 

based on the proposed routing algorithm. We consider a 

sensors area consisting of 16 square cells in two layers 

and a total of 16 CH sensors in each sampling period (Fig. 

4).  For simplicity, assume that CHs are located in the 

center of the cells. According to the proposed routing 

algorithm, a number of R = 12 routes can be created in a 

sampling period. These routes are illustrated by 

continuous lines of different colors. It should be noted 

that other routes can be created, as well. These routes 

are shown in Fig. 4 by the red dashed lines. Accordingly, 

the matrix ‰ in this example will have 12 rows and 16 

columns. In all of the routes h = 2, so in each row of the 

matrix ‰ only two non-zero elements exist and the 

remaining elements in each row are zero. In this 

example, the ‰ matrix elements are the matrices as 

‰ ᶰᴙ . The zero elements in the matrix ‰ are 

matrices of πɴ ᴙ . The zero elements shown in red 

represent the dashed red lines. In this example, only 2 

non-zero elements exist in each of the routes. Therefore, 

it can be concluded that the matrix ‰ is a sparse matrix. 

In the r-th route, a vector of length  ά  is created. 

Therefore, each of the CH sensors that located in the r-

th route will equally send  Í  data packets to the next 

CH sensor on the route. The number of "inter-cell" data 

packets in each route (e.g., in the r-th route) is 

ὝὙ άὬ where Ὤ is the number of sensors located 

on the route r. As a result, the number of transmitted 

packets to all routes in the sensors area (R routes) is  

ὝὙ В άὬȢ The number of received data packets 

per route is equal to the number of transmitted data 

packets in that route minus one. The source sensor in 

the route will not receive any data packet. In other 

words, all sensors on the route, except the source 

sensor, will send and receive data packets. So the 

number of received packets per route is ὙὉ

ά Ὤ ρ and the total number of received packets in 

all routes in each sampling period is obtained by 

ὙὉ В ά Ὤ ρ.   

C.  Energy Consumption Model 

Energy consumption in a WSN node can be 

categorized into two groups: (a) energy consumption 

due to computation and (b) energy consumption due to 

communication. It is noted that in a typical WSN, energy 

consumption during data acquisition (sensing) and signal 

processing depend on the type of employed sensor 

nodes and is based on the application; so, this work only 

considers energy consumption during communication 

between sensors. In WSNs, communication between 

sensors has the highest energy consumption. 

Transmitting and receiving signals consume about two-

thirds of the total energy in a typical sensor. However, 

energy consumption during sensing and processing 
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depends on the type of sensors. So, we only consider 

energy consumption during the transmitting and 

receiving data packets in this paper. 

Based on the energy consumption model proposed in 

[33], the energy consumed by a sensor for sending and 

receiving a b-bit data packet are obtained by Ὁ

Ὁ ‐ Ὠ ὦ  and Ὁ Ὁ  ὦ, respectively 

where d is the distance between transmitter and 

receiver sensors, Ὁ  is the amount of energy 

consumed per bit in the transmitter and receiver circuits, 

and ‐  is the transmitter amplifier parameter. It is 

assumed that for a free space model l = 2, and for a 

multi-path fading model l = 4  [33]. This model is shown 

in Fig. 5. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4: An example of the structure of ‰ matrix in the proposed 

method ( ὔ = 16, R=12, and Ὤ ς). 
 
 

 
 
 
 
 

 
 
 
 
 
 

Fig. 5: Energy consumption model. 
 

The consumed energy for sending data packets in r-th 

route is obtained by Ὁ  В Ὁ

‐  Ὠ ȟ ὦάὬ where Ὠ ȟ  is the Euclidean 

distance between the sensors Î and  ὲ  in r-th route 

with the length of Ὤ. As a result, the consumed energy 

for sending data packets across all routes (R routes) is 

obtained by Ὁ  В  Ὁ  Ȣ On the other hand, the 

energy consumption for receiving data packets in each 

route (e.g., r-th route) is obtained by Ὁ  

Ὁ ὦ ά Ὤ ρȢ As a result, the energy 

consumption for receiving data packets for all routes in 

each sampling period is obtained by Ὁ  В  Ὁ Ȣ  

Performance Evaluation  

For evaluation of the proposed method, we consider 

a square sensors area with a side of 2000 m in which 

1000 sensors are distributed. Moreover, energy 

parameters were obtained for the network model 

simulation. The energy parameters are assumed as listed 

in Table 1 The other parameters which are adjusted 

during the algorithm execution are given in Table 2 The 

Equations that are used to plot some of the following 

Figs. in this article are listed in Table 3 (Figs. 7, 9, 11, and 

13). It is noted that the complete set of Eqs. that are 

needed to design and implement the proposed method 

are listed in Table 4. 

A.  Sensors Area Division and Layering 

In the proposed model, the sensors area is divided 

into equal virtual square cells (grid-based clustering).  
 

Table 1: Pre-Defined network and energy parameters 
 

Value Symbol 
Description of 

parameter 

υπ Î*ȾÂÉÔ Ὁ  Energy to send a bit 

ρππ Ð*
ȾÂÉÔÍϳ  

‐  
Free space transmitter 

power amplifier 

parameter 

64 bits ὦ  Length of data packets 

63 m d 
Average distance 

between the nodes 
 

Table 2: Parameters adjusted during the algorithm 
execution 
 

Description Parameter  

Area of sensors' region A 

Number of cells Cell 

Number of required measurements 

in the sink 

M 

  Number of measurements in the r-

th route 

ά  

Sensor transmission range R 

Number of cluster heads   CH 

 

The cell sensors can send data along the diagonal 

direction in addition to vertical and horizontal directions. 

As a result, the maximum size of the cell is obtained by 

ὶ  Ѝ
  where R is the sensor range (Fig. 6). Fig. 7 
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shows the relationship between the cell size and sensor 

range. This Fig. shows that it is necessary to increase the 

range of sensor to create larger cells in the sensors area. 

However, considering that in large-scale WSNs, the 

routes are multi-hop paths and the energy consumed for 

sending data is proportional to the Ὠ (l=2 or 4) where d 

is the distance between the hop sensors in the route. So, 

increasing the size of the cells will increase the energy 

consumption of sending data considerably.  

 
Table 3: Eqs. used to plot Figs. 7, 9, 11, and 13 

 

Fig. No. 
Equation 

No. 
Equation 

7 7 ὶ  

Ὑ

ςЍς
 

 

9 

 

13 Ὤ
ὔ

ς

ЍὅὩὰὰ

ς
 

14 
2 τςὒ ρ τЍὅὩὰὰρ

τ ὔ ρ 

11 16 

ὝὙ άὬ ά
ὔ

ς

ὓ

Ὑ
Ὤ           

ὓ ὔ

ψ ὔ ρ
   

13 17 
ὝὙ ὝὙ 2

ὓ ὔ  ὔ

ς ὔ ρ
 

ςά ὔ  ὔ  

    

 

Fig. 6: The farthest two sensors in the square cells. 

 
Moreover, the number of cells in the sensors area 

depends on the range of sensor. The number of cells in 

the sensors area is obtained by ὅὩὰὰ 
 

.  Fig. 8 shows 

the relationship between the sensor range and the 

number of cells for different dimensions of sensors area. 

In a fixed-dimension sensors area, decreasing the 

number of cells requires an increase in the range of 

sensors, as the number of cells is decreased, the distance 

between the sensors in the adjacent cells is increased. In 

this case, the energy consumed will be increased for 

sending data. 

In the proposed model, the sensors area is layered to 

improve the routing. Based on the proposed routing 

algorithm, routes are formed from higher layer to lower 

one.  

The number of layers and routes depend on the 

number of cells in the sensors area. The relationship 

between the number of routes and the number of cells 

in the network is 2 τЍὅὩὰὰρ. The length of the 

routes, or the number of hop sensors in the route, 

depends on the number of cells in the sensors area. In 

the proposed model, the relationship between the 

length of the routes with the number of cells in the 

sensors area is Ὤ ЍὅὩὰὰȾς. Fig. 9 shows the 

relationship between the number and length of routes 

with the number of the cells in the sensors area. It can 

be seen that as the number of cells is increased, the 

length and number of the routes is also increased. But as 

seen in Fig. 9, an increase in the number of cells by one 

hundred times, only increases the length of the paths by 

ten and increases slightly more than ten times in the 

number of routes. 

For example, in point A of Fig. 9, the number of cells 

is 100. If the number of cells is increased by 100 times 

(i.e., 10000 that is shown by point B), then the length of 

the route changes from 5 to 50 and the number of 

routes changes from 40 to 400 (points C and D). This 

means that an increase in the number of cells by one 

hundred times, only increases the length and number of 

routes by ten. So, the proposed method is scalable and 

may be used in a wide range of WSNs with different cell 

sizes. 

B.  Sensor Density in the Cell 

In the proposed model, the sensors are distributed 

randomly and uniformly in the cells. Therefore, the 

sensor density (the number of sensors in the cell) will 

depend on the number of cells. The relationship 

between the number of sensors in a cell with the sensor 

range can be represented by ὔ . Fig. 10 shows 

the number of sensors in a cell for different dimensions 

of sensors area and a certain number of CHs ὔ

ρπππ.  

C.  Communication Cost 

The communication cost in a WSN is considerably 

dependent on the number of transmitted and received 

data packets, as well as the length of the route. In the 

proposed model, to reduce communication cost, both 

data aggregation and routing techniques are used to 

reduce the number of data packets and the length of the 

routes, respectively. In the proposed model, reducing 

the size of the STCS measurements in the routes (ά ) 

and sending them in multi-hop routes (based on 

geographic routing algorithm) result in communication 

cost reduction in the network. In this model, the number 

of transmissions in each route is obtained by ὝὙ
 

Ȣ  The communication cost of sending data on all 

routes in each sampling period is obtained by 

ὝὙ ςά ὔ  ὔ Ȣ 

Figs. 11 and 12 show the relationship between the 

number of transmitted data packets with the number of 
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active sensors in each sampling period (the number of 

CHs) for a route and for all routes, respectively. The 

length of the vector of measurements in the route (ά ) 

is determined by the number of required measurements 

in the sink (M). According to the relation ὓ

άτ ὔ ρȟ Figs. 11 and 12 show that an increase 

of 100 times in the number of CHs (or the number of 

cells) only increases the number of transmitted packets 

by 10. Therefore, the proposed model will be very useful 

for large-scale WSNs. By increasing the number of cells 

in the sensors area, the distance between the sensors in 

multi-hop routes will be decreased and thus reduce the 

amount of energy consumed for sending and receiving 

data packets which is proportional to the second (or 

fourth) power of distance between hop sensors in the 

routes. 

In the proposed model, the total number of 

transmitted packets in a sampling period is obtained 

by ὝὙ
  

. Fig. 13 shows the relationship 

between the total number of transmitted packets and 

the number of measurements required in the sink for a 

number of cells. The results obtained from this Fig. 

confirm the results of Figs. 11 and 12. These results 

generally indicate the superior performance of this 

model for large-scale WSNs. 

In this section, a simulation for obtaining the energy 

efficiency is performed. It is noted that energy efficiency 

is defined as the ratio of transmitted data packets to 

average energy consumption in the route. We consider a 

square sensors area in which a number of sensors are 

distributed randomly and independently. The energy 

parameters are shown in Table 1. We perform our 

analysis for various route lengths: Ὤ υπ ÔÏ υππȢ  For 

simplicity, assume that the average distance between 

sensor nodes in the routes is 63 m. Analytic evaluation is 

done based on (16) and (20) of Table 4. Energy 

parameters are listed in Table 1. Fig. 14 shows the 

energy efficiency which is defined as average energy 

consumption per transmitted data packet in the route. 

D. Comparative Evaluation 

In order to evaluate the proposed method in 

comparison with a similar method, we compare the 

proposed method with the method presented in  [29], 

which is a STCS-based method. Given that, the routing 

performed in  [29] was based on the random walk 

approach, while the routing is based on a geographic 

routing protocol in our proposed method. For this 

purpose, we consider a square sensors area in which 

sensors are distributed randomly and uniformly similar 

to  [29]. We divide the sensors area into virtual square 

cells so that only one sensor is located in each cell. The 

comparison is performed in three scenarios based on the 

number of required measurements in the sink (M) and 

the number of measurements in the routes (ά ). The 

network and energy parameters and also scenario 

specifications are given in Table 5. Based on the 

proposed model, when the number of cells in the 

sensors area is considered to be 1000 cells, the number 

of generated routes will be equal to 50 routes. On the 

other hand, there is a relationship between the number 

of required measurements in the sink and the number of 

the routes (2 ). The results of this comparison for 

three scenarios are shown in Fig. 15. It can be seen that 

the amount of energy consumed in each sampling period 

in the proposed model shows %22.73 reduction in the 

first scenario, 35.57% reduction in the second scenario, 

and 43.53% reduction in the third scenario as compared 

to the proposed method in  [29] as given in Table 6.  

Conclusion 

In this paper, a new method of STCS technique based on 
the GAF protocol is proposed. In the proposed model, 
the sensors area is divided into square virtual cells and 
then the sensor area is layered to facilitate routing. In 
this method, temporal data is obtained from random 
selection of temporal readings of each CH in the sensors 
area and spatial data will be formed from the data 
readings of CHs located on the routes. Based on this 
model, a new structure for the sensor matrix is created 
which reduces the energy consumption of the network. 
The results of evaluation of the proposed model indicate 
that this model will be suitable for large-scale WSNs. We 
compared the proposed method with the method 
presented in  [29] which is an STCS-based method. 
Although, routing in  [29] was performed based on the 
random walk approach, while routing in our proposed 
method is done based on a geographic routing protocol. 
Comparison is performed in three scenarios based on 
the various values of required measurements in the sink 
(M) and the number of measurements in the routes 
(ά ). The results show that the proposed method 
reduces energy consumption in the range of 22% to 43% 
in various scenarios as compared to the method 
proposed in  [29]. 

 
 

 
Fig. 7: Maximum size of cell versus the range of sensor. 
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Fig. 8: Number of cells versus the range of sensor. 

 
 
 

 
 

Fig. 9: Relationship between the number or length of the 
routes and the number of cells. 

 
 

 
Fig. 10: Number of sensors versus the range of sensor for 

different dimensions of sensors' area ὔ ρπππȢ 

 
 
 

 
 

Fig. 11: Number of transmitted data packets per route versus 
the number of CHs. 

 
 
 

 

Fig. 12: Number of transmitted data packets in all routes in a 
sampling period versus the number of CHs. 

 
 

 
Fig. 13: Communication cost versus the number of required 

measurements in the sink for different number of cells. 
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         Table 4: List of Eqs. used in implementing the proposed method 
 

Description Equation 
Eq. 
No. 

Cell size ὶ  

Ὑ

ςЍς
 7 

Cell area ὃ ὶ
Ὑ

ψ 
 8 

Total number of cells ὅὩὰὰ
ὃ

ὃ

ὃ

ὶ

ψὃ

 Ὑ
 9 

Number of sensors in the cell ὔ
ὔ

ὅὩὰὰ

ὔὙ

ψὃ
 10 

Total number of CHs in sensors' area ὔ ὅὩὰὰ 11 

Number of sensors' area layers ὒ
ЍὅὩὰὰ

ς
 12 

Length of route Ὤ
ὔ

ς

ЍὅὩὰὰ

ς
 13 

Total number of routes 2 τςὒ ρ τЍὅὩὰὰρ τ ὔ ρ τςὬ ρ
ὓ

ά
 14 

Number of required measurements in the 
sink 

ὓ άτ ὔ ρ άτЍὅὩὰὰρ 15 

Number of transmitted packets per route ὝὙ άὬ ά
ὔ

ς

ὓ

Ὑ
Ὤ

ὓ ὔ

ψ ὔ ρ

ά ὔ

ς
 16 

Number of transmitted packets in all 
routes 

ὝὙ ὝὙ 2
ὓ ὔ  ὔ

ς ὔ ρ
ςά ὔ  ὔ  17 

Number of received packets in the route ὙὉ άὬ ρ
ὓ ὔ

ψ ὔ ρ
ρ
ά ὔ

ς
ρ 18 

Number of received packets in all routes 
ὙὉ ὙὉ 2 2M ὔ τ ὔ ρ

τ ὔ ρ ςά ὔ ρ 
19 

Energy consumption for data transmission 
per route in the sensors' area 

Ὁ  Ὁ ‐  Ὠ ȟ ὦὝὙ

Ὁ ‐  Ὠ ȟ ὦάὬ 

20 

Energy consumption for data transmission 
to all routes in the sensors' area 

Ὁ   Ὁ   21 

Energy consumption for data reception per 
route in the sensors' area 

Ὁ  Ὁ ὦ ά Ὤ ρ 

 
22 

Energy consumption for data reception 
from all routes in the sensors' area 

Ὁ   Ὁ   23 

 

Scenario M ά  A N Ὁ   ‐  b d 

First 100 2 2000×2000 m2 1000 υπ ὲὐȾὦὭὸ ρππ ὴὐȾὦὭὸȾÍ  
64 
bits 

63 m 

Second 200 4 2000×2000 m2 1000 υπ ὲὐȾὦὭὸ ρππ ὴὐȾὦὭὸȾÍ  
64 
bits 

63 m 

Third 500 6 2000×2000 m2 1000 υπ ὲὐȾὦὭὸ ρππ ὴὐȾὦὭὸȾÍ  
64 
bits 

63 m 

 

Table 5: Network and energy parameters of the proposed method in three simulated scenarios 



M.R. Ghaderi et al. 
 

170 
 

Table 6: Energy consumption reduction in the proposed 
method as compared to the method reported In  [29] 
  

Scenario   M ά  Energy reduction 

First 100 2 22.73% 

Second 200 4 35.57% 

Third 500 6 43.53% 

 
 
 

 

 
Fig. 14: Average energy consumption per transmitted data 

packets in the route. 
 
 
 
 

 
 

Fig. 15: Comparison of average energy consumption in each 
sampling period in the proposed method and the method 
presented in  [29]. 
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Abbreviations  
 

ɻ Sparse signal 

ɻȟ 
Transformation coefficients in the spatial 
domain 

ɻ i-th sensor spatial reading   

ʈ ɮȟɰ  
Coefficient of coherence between ɮ and 
ɰ matrices  

ɰ  Transformation in spatial domain 

ɰ  
Transformation in spatio-temporal 
domain 

ɰ  Transformation in temporal domain 
ὃ  Cell area 

Ὁ   
Energy consumption for data reception 
from all routes in the sensors' area 

Ὁ   
Energy consumption for data reception 
per route in the sensors' area 

Ὁ   
Energy consumption for data transmission 
to all routes in the sensors' area 

Ὁ   
Energy consumption for data transmission 
per route in the sensors' area 

Ὁ  Energy to send a bit 

ὓ  
Number of measurements in temporal 
domain 

ὔ  Total number of CHs in sensors' area 

ὔ  Number of sensors in the cell 
ὙὉ Number of received packets in all routes 

ὙὉ Number of received packets in the route 

ὝὙ 
Number of transmitted packets in all 
routes 

ὝὙ Number of transmitted packets per route 

ὦ  Length of data packets 
ά  Number of measurements in the route r 

ὶ   Cell size 

ώ 
i-th vector of measurements vector 
belongs to i-th sensor 

‐  Transmitter amplifier parameter 

‐  
Free space transmitter power amplifier 
parameter 

‰ 
i-th column of measurements matrix 
belongs to i-th sensor  

A Sensing matrix 

ATCA Adaptive threshold compression 
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algorithm 

CH Cluster head 
CS Compressive sampling 
d Average distance between the nodes 

DCT Discrete cosine transform 

DGAF Diagonal Geographic adaptive fidelity 
DWT Discrete wavelet transform   
GAF Geographic adaptive fidelity 
Ὤ Length of route 

KCS Kronecker compressive sensing   
N Number of sensors 

OMP Orthogonal matching pursuit 
R Sensor range 
2 Total number of routes 

RIP restricted isometric property   
STCS Spatio-temporal compressive sampling 

T Sampling period 
t Time slot 

 UEG-AM 
Unbalanced expander graph adjacent 
matrix  

WSN Wireless sensor network 
ɮ Measurements matrix 
ɰ Transformation base 
ὅὩὰὰ Total number of cells 
ὒ Number of sensors' area layers 

ὓ 
Number of required measurements in the 
sink 

ὢ Measurements 
ὼ Vector of the spatially reading signals 
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