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Background and Objective®auting and data aggregation are two importal
techniques for reducing communication cost of wireless sensor netw
(WSNs). To minimize communication cost, routing methods can be me
with data aggregation techniques. Compressive sensing (CS) is ohe !
effective techniques for aggregating network data, which can reduce the
of communication by reducing the amount of routed data to the sink. Spe
temporal CS (STCS), with the use of spatial and temporal correlatic

Keywords sensor readings, can increaghe compression rate in WSNSs, therel
Compressiveensing reducing the cost of communication.

GAFprotocol Methods: In this paper, a new method of STCS technique based on
Spatiotemporal geographic adaptive fidelity (GAF) protocol is proposed which can effect

reduce the communication cost anehergy consumption in WSNs. In tt
proposed method, temporal data is obtained from random selection
temporal readings of cluster head (CH) sensors located in virtual cells i
clustered sensors' area and spatial data will be formed from the ¢
readngs of CHs located on the routes. Accordingly, a new structur
sensing matrix will be created.

Results:The resultf proposed methodshow that the proposed method a
compared to the method proposed [29], which is the most similar methot
in the literature, reduces energy consumption in the range of 22% to 43
various scenarios which were implemented based on the number of reqt
measurements at the sinkM) and the number of measurements in tt
routes @ ).

Conclusionin the proposed method, based opatio-temporal CS (STCS),
new structure of sensing matrig createdthat can increase the compressic
rate, thereby reducing the communicatiaost in the WSNs

Wireless sensor network
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proposed for data aggregation in WSNSs, suggesting that
o . ) CS can reduce communication cost and results in
The limitation of energy resources in the sensors is the - . .
. L . ) hetwork lifetime increaseCS introduces a structure for
main challenge in implementing wireless sensor :
: . development of methods for aggregation of correlated
networks (WSNs). dda aggregation and routing are two

: L data in multthop WSN42], [3].
basic methods to reduce communication cost and : : .
In most of CS techniques, only the spatial readings of

eptirg(;/ tc onsumptlotlj. RSUTQ methtods ‘F‘?” _be mergec{he sensors and their correlation are used to compress
Wi aa- aggrgga lon techniques 1o minimize en.ergythe sensor readings. In other words, spatial correlation
consumption in the network. Recently, various

applications of compresg sensing (CS) have been

Introduction

of data read by sensors locatéd different places of the
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network is used to compress signals that have been ree s
in a given time slot. While data read by any sensor in S Spatial
sampling period, which includes multiple time slots, cat corrglation e
Iso b lated (t | lation). In addit e NN A ~
also be correlated (temporal correlation). In addition, rondoen | — i Sensor

anather concept of sensing based on spat@mporal
correlation was introduced. The physical phenomen:
sensed by a WSN often shows compressibility in bot
space and time domains. The sensory data in a WS
from natural phenomena generally exhibit correlations
in both spatial and temporal (spatiemporal)
domains[4]. The concept of spatitemporal sensing in a
sensors' area is shown iRig. 1. Several studies have
shown that the sensors observations are both sphtial
and temporally correlated. Typically, the observed

sensor readings of natural phenomena have both In the geographic routing protocols, sensors are

temporal and spatial dependency. Spatial and temporal,yyressed by their geographic locations. Moreover,

cqrrelatlo'ns.a.long with the F:ollaboratlve nature of WSNsg o< use their geographic location to determine the
bring significant potential advantages for het

o e distance to other neighbors which can use them as a hop
development of efficient communication protocols well sensor in the routd9]-[11].

guited for the WSN pargdigm.ln general, the Geographic adaptive fidelity (GAER] is one of the
improvement of data gathering approaches that are g wellknown geographic routing protocols. In the
based on CS in WSNs is originated from three aspects: (é)

. X | AF protocol, the sensors area is divided istpare
the improvement of the reconstruction algoriths of i 5 cells. In this protocol, each sensor in each cell can

compressivg sensing sig_nals; (b) the production _Of th"i':ommunicate with sensors in its four neighboring square
transformation base matrices; and (c) the production Ofcells (horizontally and vertically). In GAF, the size of
the sensing matrices. In this paper, we propose ayyare cells is defined in such a way that the farthest

method for improving the sensing matrix. Moreover, sensors in the adient cells can communicate with each
routing techniques are also used to duce energy other depending on the sensor rangeR( In this

consumption in WSNsThe communication Cost in & nh6001 only a sensor in each cell is selected as the
WSN is the main source of energy consumpfigiend is  ,tive sensor and the radio of the remaining sensors

a serious challenge in designing routing proto¢6Is[7].  yoes off in order to save energy in each sampling period.
Ingeneral, the improvement of data gathering ggected sensors in the cells are basically CH sensors that
approaches that are based on CS in WSNs is originatedls responsible for sending data and routing to the sink.

from three aspects: (a) the improvement of the p0 45 the limitations of the GAF protocol, which allows
reconstruction algorithms of compressive sensmgSending data only in two vertical and horizontal

signals; (b) the production of the transformation base yire tions in square cells, anotheersion of the GAF

matri.ces; and (c) the production of the ser?sing matriceswhich is called diagonal GAF (DGAF) was propfdsid
In th!s paper,. We propose a mgthod for_lmprovmg the In DGAF, sensors in two adjacent diagonal cells can also
sensing matrix. Moreover, routing techniques are alsocommunicate with each other. In this paper, we propose

used to reduce energy c.onsu.mption WSNs.Routing a new spatietemporal CS (STCS) method for aggregating
protocols can be categorized in two general types: ﬂatdata based on the GAF protocol.

routing and hierarchical routing (or clustered routing). In | ihis proposal, similar to DGAF, we first divithe
the flat type, all nodes have the same function and Sendsensors area into virtual squared cells and then lay the

data to the sink in mulhop paths. sensors area based on the cells locations to improve the

] In- the hlgrarchlcal routing procols, sensgr nodes are routing. In each sampling period, only one sensor of each
distributed in clusters and a sensor node is selected as.o| will be selected as the CH sensor. Data read by CHs
cluster head (CH) node in each clustdhe task of

are compressed at vianus time intervals based on the

sending data to the sink .is performed by the CH nOdesproposed STCS technique and then this data is sent to
In largescale WSNSs, it is recommended to US€hea sink based on a routing algorithm.

hierarchical routingnethods|8]. In the clustered routing The continuation of this article is as follows: In the

protocol, sensors know their geographic locations withse.,nq section, theoretical foundations of CS theory wil
the help of GP&ke equipment which is embedded in o giseyssed anih the third section, we will review the
them. Consequently, these protocols also refer to

geographic routing protocols.

'S/ 8
Temporal
& B8
T4 T .
tT

Sensor

Fig.1:Concept of the spatibemporal sensing.

related works. The proposed method will be presented
in the fourth section. In the fifth section, the proposed
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method will be evaluated and in the last section we willsampling period. We can also show as &

conclude the proposed method. whofB o where,¥a represents the data read
Compressive Sensi in a time slot t, { ¢ <T) by dl the sensors. It is assumed
A. Spatial CS that @ has spatietemporal correlation. We assume that

there is suitable transformation base in spatial and
temporal domains whichb has a sparse representation

readings to the sink, the sink will only requidd o, them. These transformations can be represented in
compressed measurements whidd is much smaller spatial aml temporal domains by uj¥a and

than N [14]- [16]. To explain the CS theory, consider a,, vq | respectively. Therefore, each vector of data
sensor network witH\ sensor nodes. kbis the vector of (the data read by all sensors at time sijt namely

the spatially reading signals &f sensors in a sampling @ No pitf8 AY has a sparseepresentation as
period andw is a suitable transformation Is&, then the W4 in which | sxa is the transformation
vector| X2 , which is a sparse signal, can be obtained a8 pefficients in the spatial domain.

1 wa But the] vector length still remains equal to With the accumulation of coefficients ag

the number of network sensord\j. If we consider the L iR 5F8 B ; , the transformation o in the spatial
matrix i3 X2 as the measurements matrix in the Csdomain can be represented by w4 . It means
technique, theni-th column in this matrix belongs teth

sensor %o) in the network. In this case, each sensor o

multiplies its spatial reading () by the vector of its own @B o w | zh B 1)
column {). Thus, the seto | %o will be generated Similarly, & will have a sparsity representation as
for all sensos in whichy is the data read by theth W4 r where | zxa is the transformation
sensor andko is thei-th column of the matridXe8If all  cqefficient in the temporal domain. By the defioh of
sensors send theit) values to the sink, then the vector 1 L B MR ; ,the transformation ofdin the
@ | Bwill arrive at the sink. The length of y is equal totemporal domain can also be represented by
M, which is less tn the sparse reading vector of the W or

sensors X). So, less energy will be used to send datato o

the sink. The sink can easily recover the reading data® w8 ho W 4 rh fMB AR )

vector §) from the measurements vectoy)([17]. Using The Kronecker spse bases can combine different

the method of minimizingll-norm [14], [18][20], or  patterns of correlation in two dimensions to form a
other recovery methods such as the orthogonal matrix [26]-[28]

matching pursuit (OMP) algithm [21], the original

vector &) can be obtained from the vector of W W $ W XA ©)
measurements )). However, there are two basic  pye to theirregular distribution of sensors in the
condi tions f dgrmattickse whicH playn densors areaw; and w can be constructed using
important roles in the stable recovery of thempressed | aplacian graph vectors and discrete cosine transform
signal. These two conditions are as follows: (a) thqpcT), respectivel9]. In the conventional methods of
restricted isometric property (RIP) for the matrix STCS, the compressed measurement of the spatial
0 [16], [22], [23] and (b) the mutual coherence between readings of sensors in time slot t is shown djs

the W and [1€] [2g[R4]. Theemstrix! iS  where  is the size of measurements vectdr 0§ .
defined as:!!  wRB" A [20], [25]. To implement The measurements vector can be represented by
the ~ CS  technique, © must  follow ¢, %y where % 5 is a matrix withd  rows

0 08@ 16§ Bhy [24] where Cis a conf@ant  and{ columns. Considering all time slots in a sampling
value greater than IQis the sparsity and Bhy isthe  period (), we can define the sensor matriy as a

Based on the CS theory, instead of sendihgensors

coefficient of coherence betweelp andw matrices. diagonaiblock matrix as follows0]:
B. STCS %o

To describe the STCS technique, assume that thg E i (4)
] signal represents a twdimensional signal %o

which mcluldes T datread.athmg slots-p 0 "Yby As a result, the general vector of measurements is
N sensors in each sampling period. If i represents any OJefined as & Baowhere & &R T

sensors'®) , then ¢i}th input of the signal ® represents the measurement vectand 0 B 0

represents the th data read by thé-th sensor. It can be .

N . . represents the total number of measurements involved
shown that the @ signal in the form of . : . .
i s BB Fi ) hich h | in the STCS process during a sampling pefioGiven
(fJ w In whic ] the co gmns the compression capability of the spatial domain, we can
w¥a represent the data read byi-th sensor inT  ,piain the multidimensional signalX by solving the
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recovay problem using conventional decoding methodsemploying an improved random walk algorithm for a
in CS techniqueOne can get ango N6 pktfB FYfrom  "mobile sink" to collect data from a sensors areThe
the measurements separately by the following E@): proposed scheme in [33] exploited Kronecker
compressive  sensing (KCS) for spatimporal

| 5D ol 0QE | 188 @ %ol ®) correlation of sensory data by allowing the mobile sink
As aresult, we can writ® ~ wj| §. to gather temporal compressive measurements from a
small sibset of randomly selected nodes along a random

Related Works routing path. Authors in[34] proposed an adaptive

Various C®ased data gathering methods have beensampling method based on spatiemporal correlation
proposed for data aggregation in WSNs. In somde$é  Of sensor readings for clustered WSNs. [B¥], a
works, routing methods are implemented based onclustering method according to spatial correlations of
clustered routing protocols and in others, routings areSensor nodes was proposed. In addition, sensors area
presented based on treebased routing approaches. Was divided into clusters so that each CH kept a
Some studies have shown that clustered routingPrediction model for sensors reading data which was
methods have better performance than trdmsed derived fran historical data in the temporal domain. In
routing a|gorithrn5 in terms of energy Consumption andthiS method, redundant data transmission was reduced
traffic load balancing[30]. In 0, a CShased data by adjusting temporal sampling frequency. Some sensor
aggregation method with a random wallased routing sets were selected within each cluster following intra
algorithm (which is a tre®ased routing) was suggested cluster correlation, and only one collection waseded
in order to reduce communication cost. By the CS to be activated at each sampling round time. Sensors
based data was routed based on random routes calledeading data of norsampler can be substituted by those
random walks. In addition, a method was presentedof sampler due to strong spatial correlation between
using a CS technique and graph theory in which randorthem. In [35], the authors proposed a hierarchical
measurements were aggregated by random walks. Th@daptive spatitemporal data compression (HASDC)
random sensing matrix ithis method was defined by method. The method proposed ifi35] explores the
random walks. Similar to, a method was proposed fortemporal correlation of sensory data by employing the
data aggregation based on CS with a binary sensingiscrete osine transform (DCT) and adaptive threshold
matrix in[29], where random walk and random sampling compression algorithm (ATCA). The CH explores the
were used jointly in a cltsred network. That sensing Spatial correlation among the compressed temporal
matrix as a structured matrix was an unbalancedreadings by utilizing discrete wavelet transform (DWT)
expander graph adjacent matrix (UM) if the and ATCA. The prOpOSEd method(iﬁ] combines three
following parameters were selected correctly: (a)techniques including: (a) data sorting; (b) ATCA; and (c)
random walk length; (b) random sampling probability; (c)sPatiotemporal data gathering method. At the same
number of measurements; ah(d) number of clusters. time, according to the correlation of sensory data and
In [32], a method called neighbesided compressive the adaptive threshold value, the compression ratio can
sensing (NACS) was proposed in which data aggregati®¥® adaptivecontrolled. In [36], for improving the
was performed using a STB&ed method. In this accuracy of reconstructed data, a method based on
method, the sensor nodes only send the rows of data ofveighted spatietlemporal compressive sensing was
their temporal readings to the randomly seledte Proposed. In the proposed method {87], the sensors
neighbor sensors in each sampling period. Then, thérea was clustered and in order to reduce the temporal
sensor measurement which was produced by theredundancy. In addition, dual prediction was used in the
neighboring sensor was sent directly to the sink. Sensin#jitra-cluster transmission and hybrid compressive
matrix in this method was also produced on this basissensing (HCS) technique was employed for reducing the
In [29]’ a data aggrega’[ion a|gorithm was proposedinter-duster S[altlal transmission redundancy.
based on random sampling and random whHsed Proposed Algorithm
routing in the spatietemporal domain. Ir[29],_ the UEQ A Network Model
AM [31] has been also used as the sensing matrix. In
many CShased proposed methods in WSNs, ttmesed
routing algorithms were employed. It has been shown
that clustered routing methods show better
performance than treebased routing algorithms for
energy consumption and traffic load balandi3@j.

In [33], the authors exploited the mobility pattern for
spatiotemporal mobile data gathering method by

We have some assumptions in our model:
I) Impact of packet loss during data transmission is not
considered, since it can be handled at the lower layer.
) Only energy consumption due toommunication
processes is considered. The energy consumption of
computation processes depends on the type of sensor
node; so, it is neglected. In general, it is noted that in a
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typical WSN, energy consumption during dataother through multihop routing. In this typ of routing,
acquisition (sensing) and signpfocessing depend on nodes have the same role. On the other hand, the
the type of sensor nodes; so, this work only considersierarchical routing is classified into two categories:
energy consumption during communication between clusterbased and gridbased clustering techniques:ig.
sensors. Moreover, communication between sensors 2 shows the proposed network model. In order to
has the highest energy consumption in WSNsimprove the routing, we lay theellular sensors area. In
Transmitting and receiving signals same about twe  Fig. 2, cells in different layers are shown in different
thirds of the total energy in a typical sensor. So, we onlycolors. The lowest layer is the closest layer to the sink
consider energy consumption during the transmitting which is considered as the first layer. In proposed model,
and receiving data packets in this paper. there is a routing constraint by which routing is
In our proposed model, the sensors are distributedimplemented only from the higher layer to the lower
uniformly and randomly in a squaregion. Similar to the one. Therefore, if CH sensors are located in the diagonal
DGAF, we divide the sensors area into equal virtuatells of the sensors area, there is only one path to send
squared cells, so those sensors in adjacent cells (idata from the higher layer to the lower one. If the CH
addition to vertical and horizontal directions) can alsosensors are located in nesiagonal cds, depending on
communicate in a diagonal direction. In this model, thewhich cells they are located, there are 2 or 3 paths from
sink is locatedat the center of the sensors area. In this higher layer to the lower one. The decision to select a CH
paper, we use the geographic sink placement (GSHjom 2 or 3 candidate cells is based on the shortest
strategy for sink placement in the sensors area. In GSRjstance of the candidate cells. In other words, the CH of
sink is placed at the center of gravity of an area. The GSfandidatecells is chosen as a relay sensor which has a
strategy is intended for uniformly distribuenetworks lower distance with the source sensor. This process is
when there is no information about sensor nodes'shown in the routes oFig.2. The routes with solid lines
locations. In this paper, the sensor nodes are distributedare implemented routes and dashed lines are candidate
uniformly in sensors area based on the network modelroutes that are not selected due to moréstance to the
SO our strategy is same as GSP. The sink placement at theurce sensor. In summary, the effects of clustering in
center of gravity givesrptty good results for uniform our results are as follows: (a) simplification of the node
node distributions. For applications whose nodes aremanagement; (b) reduction of energy consumption; (c)
uniformly distributed, GSP is a good option in order toachieving scalability; and (d) improving load balancing,
minimize the delay. Furthermore, GSP strategy igobustness andata aggregation.
obviously very computationally efficient. In many g, pata Gathering
researches in théield of WSNs, the sink is located at the

center of sensors area. . .
selected as a CH sensor in each cell. The CH sensors will

tln (Ij(rde_r _Ito tre;ir:JceGAe;ergyt/ C(I)nsump?ct); in the read the environmental data temporally intime slots.
network, simiiar to the protocol, one of the sensors,, - sampling period, a number odR routes are

in each cell was randomly selected as an active Senscfr[nplemented in the cellular network. Temporal data is

(CH dsensqr) d{.ﬂ. dea:jch Samplmlg _|pdr I;Zach STa;]mpgi'g gathered based on temporal readings of CH sensots in
period (1) is divided into equa 'gme slotg)( e. . time slots, and spatial data is gathered based on CH
sensors read and record the environmental data in t'mereadings on the routes. This process can be described as
sl ot )fghee both spatial and temporal reaOIIngsfollows: According to the CS theory, assuttmat the sink

of the sensors m_ th.e time S_IOtS and sampling period ma3fequires M measurements to accurately recover the
be correlated, it is possible to aggregate the data

ded in the CH based on the STCS techni temporally read signals by the CHs. In addition, assume
recorded in the senepbased on the o1 %5 eChnique. i a4 R routes are generated in each sampling period.
The proposed routing algorithm in this paper is

il ted based th hic locati £ th Therefore,& measurements will be performed in each
implemented based on the geographic location of the | . < b tham=2a

sensors. In this model, each cell has an a}gdress in the To explain how to compress and send compressed

form of C Jft), where, -& )it & and m=2—6and data to the sink, consider-th route. Assume that the

i are introduced inTables 2and 3, respectively. length of this route (the number of hops) is equalho
To reduce the energy consumption in WSNs, variou§™i9-3). If the temporal data is represented ly, then

routing protocols have been introduced by the the temporal data read by therSt sensor in the route

researches. Furthermore, based on the network(Source senso€ ) can be given byo xa . Now the

structure class, routing approaches are divided into fla compressed measurement of the temporal readings of

and hierarchical protocols. In the flat routing (similar to the sensorl in a time slot can be shown a®

the routing method which is proposed [29] (random % @ Wwhere @is andd is the length of the

walk routing), all sensor nodes cooperate with eachmeasurements on theth route & Y.

In a sampling periodT}, a sensor will be randomly
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matrix %oN 5 hasRrows and(0  columns.Here
00°9°,6[0 of 09°,0/0 of 0°°,6[0 of dmm ;
enecs o |8 | otm|0cm|© 0 15,000 we describe the structure of the matri%by an example
09 o9 o0y, of 99°,06l0 o pyﬁ 00 based on the proposed routing algorith/e consider a
°o |0 |& : 0 0 L4 0 sensors area consisting of 16 square cells in lay@rs
(1Y) 0 0 0 0 . . .
o° 0o ‘g“ 0 (£° o °° 0 o°L3 /Of o° o° and a total of 16 CH sensors in each sampling peFad (
0% 09 09V ko o o M’ A0 6 OB 4). For simplicity, assumg that CHs are located m the
0 [0 |0 C\ o |0 0 [0 |0 center of the cellsAccording to the proposed routing
0%° 50[0 of 0% o ftlaf o00° ol0 of o9 algorithm, a number oR = 12 routes can be created in a
Oty 0 0 2P0 A O 0 Ocimy) . . .
= = A — PO = x sampling period. The®e routes are illustrated by
om0 T o leilodalo” | ©°e °|oma| continuous lines of different colorst should be noted
090 J [0 of 0© o\%,x(;Ap o] 0°° o0 o 0 that other routes can be created, as welhese routes
0 0[O % I o |9 are shown inFig 4 by the red dashed line#\ccordingly,
R 00 ?, Ol °°";;'o#; o/iKe S(2fate 0o o °  the matrix %oin this example will have 12 rows and 16
e Sate il A0 5 columns.In all of the routesh = 2, so in each row of the
0 00 O of © 5 0 :P ol © 00 Q o © o .
0 0 Q... 79 ° 0 0 0 matrix %o only two nonzero elements exist and the
00 %0 o 090, ,[0 090 0 o[® [0 ofc0 9 remaining elements in each row are zertn this
G2 |0 | (R | TR L ﬁ’"’ example, the%o matrix elements are the matrices as
@sink O ActiveNode/ CH ~ OSleep Node . %0 N A . The zero elements in the matri%o are
Fig. 2: Networknodel in the proposed method (alayer matrices ofrt™ A - The zero elements shown in red

sensors area with 100 square cells and 300 sensors).  represent the dashed red linetn this example, only 2
non-zero elements exist in each of the routd@herefore,
it can be concluded thathe matrix%.is a sparse matrix.

Yo = Oy Ty Iy = Ykl T, yr:ie(np__mh)(ﬂx" In the r-th route, a vector of lengtha is created.
/ \/ \ / \ Therefore, each of the CH sensors that located inrthe
i/ ( \ th route will equally sendi  data packets to the next
& i o ® CH sensor on the routd.he number of "intercell' data
So:l; Mz s M o packets in each route (e.g., in theth route) is
“YY & "Q whereQ is the number of sensors located
Fig. 3: Dataggregation in-th route with h hop sensors. on the router. As a result, the number of transmitted
packets to all routes in the sensors ard@ routes) is
In this relation, %o 7 4 is the measurement “YY B & "Q8The number of received data packets

matrix with The matrix element$%. are represented by per route is equal to the number of transmitted data
%o, With the values of 0 or 1If ¢ temporal readings are packets in that route minus one. The source sensor in
shown byt , thenwe can select a number of temporal the route will not receive any data packeln other
readings®  randomly with probability ofl In general, words, all sensors on the route, excephet source

for i-th sensor inr-th route, the elements of the matrix Sensor, will send and receive data packets. So the
%o can be defined af29: number of received packets per route %O

a Q p and the total number of received packets in
(6) all routes in each sampling period is obtained by
YO B a Q p.
The sensog will relay its compressed data( to the  C. Energy Consumption Model
next hop sensor in the route (i.e., sengor). As before,
the vector of compressed measurements in the sensor
¢ will be generated as) ® %o w where% @ is
the vector ofl compressed dataThe sensor  will
send the total sum to the next sensor on the rougo,
all the sensors in the route send their data to the sink
(Fig. 3. Finally, afteth hop counts, the data will arrive at
the sink.Consequently, the vector of measuremends)(

ph 0 A £ O O QLR QO ®

%Oﬁ r ey LY ’ T 57w I \ ’
T 0 Al i € woe @ Yo

Energy consumption in a WSN node can be
categorized into two groups: (a) energy consumption
due to computation and (b) energy consumption due to
communication. It is noted that in a typical WSN, energy
consumption dumg data acquisition (sensing) and signal
processing depend on the type of employed sensor
nodes and is based on the application; so, this work only
considers energy consumption during communication
in the r-th route will becd B %o . In this case, petween sensorsin WSNs, communication between
the number of transmitted data packets in the route is of sensors ha the highest energy consumption.
the order of0 & "Q [18]. When all the routesR routes)  Transmitting and receiving signals consume about-two
in the network run such a CS data gathering approach, thirds of the total energy in a typical sensor. However,
measurement vector ae) %owis created. The sensing energy consumption during sensing and processing
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depends on the type of sensors. So, we only considewith the length of Q. As a result, the consumed energy
energy cosumption during the transmitting and for sending data packets across all rout&srutes) is
receiving data packets in this paper. obtained byO B ‘O 80n the other hand, the

Based on the energy consumption model proposed inenergy consumption for receiving data packets in each
[33], the energy consumed by a sensor for sending andoute (e.g., r-th route) is obtained by O

receiving a kit data packet are obtained b¥D 0O wéd Q p8 As a result, the energy
O - Q& and O 'O & respectively consumption for receing data packets for all routes in
where d is the distance between transmitter and each sampling period is obtained By B O 8

receiver sensors,O is the amount of energy performance Evaluation
consumed per bit in the transmitter and receiver circuits,
and - is the transmiter amplifier parameter. It is
assumed that for a free space modek 2, and for a
multi-path fading model = 4[33]. This model is shown

For evaluation of the proposed method, we consider
a square sensors area with a side of 2000 m in which
1000 sensors are disbuted. Moreover, energy
parameters were obtained for the network model

inFig. 5 simulation. The energy parameters are assumed as listed
ci-2,2) 120 | o) c2,2) in Table 1The other parameters which are adjusted
ns Al (B P, AN @® ns during the algorithm execution are given Trable 2The
= b Equations that areused to plot some of the following
et \lnz m%/ =12 Figs. in this article are listed iffable 3(Figs.7, 9, 11and
an:”— q’l 3 Au“i;x ‘(,fc’zf}m 13). It is noted that the complete set digs.that are
ER <‘.\q_1:_1] .i\cu.'-lzx;’ ol needed to design and implement the proposed method
m”‘;=6 i e 7& r:ﬁoms are listed inTable 4
) e | ~ A. Sensors Area Divisiand Layering
- '5”\ ;’f_ﬂ 3’:1% ® \\\70”14 In the proposed model, the sensors area is divided
C-2,2) c(-2,-2) c(1,2) c2,-2) into equal virtual square cells (grimhsed clustering).
Table 1: Préefinednetwork andenergyparameters
i 0 0 0 ¢gt0o 0o 0 0 0 0 0 0 0 0 0
! A —
3 og o0 ,;; O Description of Symbol Value
0 ¢t 0 0 0 0 0 gt 0 0 0 0 0 0O 0 0 parameter _
0 gf 0 0 0 00 0 gfo0 0 0 0 0 0 0 Energy to send aib O vt FAEO
0= o o g0 0 00 h 0gn 0 0 00 0 e Free space transmitter
00@5300000{]0@51100000 o T[ﬁ*
0 0 g5 0 0 00 0 0 0 0 gh 0 0 0 0 power amplifier - Pz
R N parameter TAEIO
b 0 0o 0 00 0 0 0 0 0 0 gf o Length of data packets @ 64 bits
_qﬁ}ﬁ 00 0 00 0 0 0 0 0 0 0 0 0 gg» Average distance
between the nodes 63m
Fig. 4: Arexample of the structure dbematrix in the proposed
method (0 =16,R=12 and'Q ). Table 2: Parametersadjusted during the algorithm
execution
d
i Parameter Description
. A Areaof sensors' region
Frx(b.d) R Cell Number of cells
b.bit packet _ _ i ' Fresios M Number of required measurements
dramsmit ) Teamplifier 1) LY eotronics i i
electronies . in the sink
i ' a Number of measurements in the
Efec X b Eqmp X b x d! i {L Eotee X B th route
R Sensor transmission range
N . CH Number of cluster heads
Fig. 5: Energgonsumption model.

The consumed energy for sending data packetstm The cell sensors can send data along the diagonal
route is obtained by ©O B O direction in addition to vertical and horizontal directions.
- Q ; i "Q where Q is the Euclidean As a result, the maximum size of the cell is obtained by
distance between the sensofs and ¢ in rth route | - whereRis the sensor rangé-(g 6). Fig.7
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shows the relationship between the cell size and sensoin the network is2 1 116 Q& (1. The length of the
range. TisFig.shows that it is necessary to increase theroutes, or the number of hop sensors in the route,
range of sensor to create larger cells in the sensors arealepends on the number of cells in the sensors area. In
However, considering that in largale WSNs, the the proposed model, the relationship between the
routes are multihop paths and the energy consumed for length of the routes with the number of cells in the
sending data is proportional to th@ (I=2 or 4) whered  sensors area is'Q W8 QFg.a Fig. 9 shows the

is the distance between the hop sensors in the route. Soye|ationship between the number and length of routes
increasing the size of the cells will increase the energyith the number of the cells in the sensors area. It can

consumption of sending data considerably. be seen that as the number of cells isrizmsed, the
length and number of the routes is also increased. But as
Table 3: Esjused toplot Figs. 7, 9, 1land 13 seen inFig.9, an increase in the number of cells by one
i hundred times, only increases the length of the paths by
Fig.No. Eguatuon Equation ten and increases slightly more than ten times in the
: 7 number of routes.
7 7 i i For example, in point A dfig.9, the number of cells
13 } T B adad is 100. If the number of cells is increased by 100 times
9 Q C < (i.e., 10000 that is shown by point B), then the length of
14 2 1¢d p T MO éi the route changes from 5 to 50 and the number of
T 0 p routes changes from 4@ 400 (points C and D). This
vy &0 & ﬁ_g,,Q means that an increase in the number of cells by one
11 16 ¢ Y _ hundred times, only increases the length and number of
v v routes by ten. So, the proposed method is scalable and
) ‘1’ 0 "p_ may be used in a wide range of WSNs with different cell
" - vy vy o 2 QU — l:) sizes. o
. I B. Sensor Density in the Cell
S ° In the proposed model, the sensors are distributed
randomly and uniformly in the cells. Therefore, the
S, sensor density (the number of sensors in the cell) will
/;' depend on the number of cells. The relationship
* between the numbeiof sensors in a cell with the sensor
F/ Vi range can be represented hy —. Fig.10 shows
52 - the number of sensors in a cell for different dimensions
of sensors area and a certain number of CHs
Fig. 6: Théarthest two sensors in the square cells. p TTLT

C. Communication Cost

The communication cost in a WSN is considerably
dependent on the number of transmitted and received
the sensors area is obtained ByQ & &—. Fig.8 shows g5 packets, as well as the length of the route. In the
the relationship between the sensor range and theproposed model, to reduce communication cost, both
number of cells for different dimensions of sensors areadata aggregation and routing techniques are used to
In a fixeddimension sensors area, decreasing thereduce the number of data packets and the length of the
number of cells requires an increase in the range ofoutes, respectively. In the proposed model, reducing
sensors, as the number of cells is decreased, the distanade size of the STCS measurements in the routes (
between the sensors in the adjacent cells is increased. land sending them in multiop routes (based on
this case, the energy consumed will be increased fogeographic routing algorithm) result imommunication
sending data. cost reduction in the network. In this model, the number

In the proposed mdel, the sensors area is layered to of transmissions in each route is obtained byY
improve the routing. Based on the proposed routing
algorithm, routes are formed from higher layer to lower
one. - :

The number of layers and routes depend on the'YY ¢a 0 0 8
number of cells in the sensors area. The relationship Fig. 11 and 12 show the relationship between the
betweenthe number of routes and the number of cells humber of transmitted data packets with the number of

Moreover, the number of cells in the sensors area
depends on the range of sems The number of cells in

——38The communication cost of sending data on all
routes in each sampling period is obtained by
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active sensors in each sampling period (the number othe number of measuremestin the routes ¢ ). The
CHs) for a route and for all routes, respectively. Thenetwork and energy parameters and also scenario
length of the vector of measurements in the routé ()  specifications are given infable 5 Based on the

is determined by the number of required measurementsproposed model, when the number of cells in the
in the sink ). According to the relationd sensors area is considered to be 1000 cells, the number
4 t 0  p hFig.11and 12 show that an increase Of generated routes wlilbe equal to 50 routes. On the
of 100 times in the number of CHs (oretmumber of Other hand, there is a relationship between the number

cells) only increases the number of transmitted packetsof required measurements in the sink and the number of
by 10. Therefore, the proposed model will be very usefuthe routes ¢ —). The results of this comparison for

for largescale WSNs. By increasing the number of cell§, ee scenarios are shown Fig.15. It can be sen that

in the sensors area, the distance between the sensors ife amount of energy consumed in each sampling period
multi-hop routes vill be decreased and thus reduce the i, ihe proposed model shows %22.73 reduction in the
amount of energy consumed for sending and receivingjrst scenario, 35.57% reduction in the second scenario,
data packets which is proportional to the second (orang 43.53% reduction in the third scenario as compared
fourth) power of distance between hop sensors in theq the proposed method if29] as given iable 6

routes.

In the proposed model, the total number of
transmitted packets in a sampling period is obtained In this paper, a new method of STCS technique based on
o - . . the GAF protocol is proposed. In the proposed model,
by™Y'Y - - Fig. 13 shows the relationship the sensors area is divided into square virtual cells and

between the total number of transmitted packets and then the sesor area is layered to facilitate routing. In
the number of measurements required in the sink for athis method, temporal data is obtained from random
number of cdk. The results obtained from thigig. Selection of temporal readings of each CH in the sensors
confirm the results ofFigs. 11 and 12. These results area and spatial data will be formed from the data

generally indicate the superior performance of thiséadings of CHs located on the routes. Based da th
model for largescale WSNs. model, a new structure for the sensor matrix is created

which reduces the energy consumption of the network.

In this section, a simulation for obtaining the energy ) =
efficiency is performed. s noted that energy efficiency The re_sults of evgluatlon_of the proposed model indicate
that this model will be suitable for larggcale WSN&Ve

is defined as the ratio of transmitted data packets to :

average energy consumption in the route. Wepconsider & ?gziig ::?Zg?rc\)/miﬁd ism;hogyr'&ézz mzmgg
square sensors area in which a number of sensors ar lthough, routing in[29] was performed based on th-e
distributed randomly and independently. The energy .ondom \;valk approach, while routing in our proposed
parametes are shown inTable 1 We perform our  meoq js done based on a ggraphic routing protocol.
analysis for various route length® v TOb M8FOr  comparison is performed in three scenarios based on
simplicity, assume that the average distance betweente various values of required measurements in the sink
sensor nodes in the routes is 63 m. Analytic evaluation igM) and the number of measurements in the routes
done based on (16) and (20) ofable 4 Energy (4 ). The results show that the proposed method
parameters are listed infable 1 Fig. 14 shows the reduces energy comsnption in the range of 22% to 43%
energy efficiency which is defined as average energyh various scenarios as compared to the method
consumption per transmitted data packet in the route.  proposed in29].

Conclusion

D. Comparative Evaluation 20 -

In order to evaluate the proposed method in 20 -
comparison with a similamethod, we compare the
proposed method with the method presented 9],
which is a STd#sed method. Given that, the routing
performed in [29] was based on the ratom walk
approach, while the routing is based on a geographic
routing protocol in our proposed method. For this
purpose, we consider a square sensors area in whic
sensors are distributed randomly and uniformly similar 0 ;'3'5 s e EcseansnesREg S
to [29]. We divide the sensors area into virtual square -
cells so that only one sensor is located in each cell. The
comparison is performed in three scenarios based on the
number of required measurements in the sind)(and

60

Maxirnum Size of Cell
o
=]

Sensor Transmission Range

Fig 7: Maximumsize of cell versus the range of sensor.
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Table 4: List of Bqused inimplementing theproposedmethod

Eq. . -
No. Equation Description
. Y .
7 i — Cell size
Y8
o . Y
8 ) i m Cell area
N
9 0Qa g— i Total number of cells
10 L u Number of sensors in the cell
0 Qa alo
11 © 6 Qa a Total number of CHs in sensbarea
12 o *aa Number of sensors' area layers
C
13 1 v o Qaa Length of route
C C .
n AT o~ 3 T ” Y
14 2 1t¢d p TWMOQApM T O p 1TCQ p o Total number of routes
o . — . ST s s Number of required mesurements in the
15 v aT U p aT1TWMoQap . 4
sink
v gy . O D, 0 T & G .
16 YY &4 Q a =0 — Number of transmitted packets per route
¢ Y v o p C
0 6 — i
17 VY "YY 2 __ @ o = Number of transntted packets in all
c 0 p routes
18 YO aQ p v T p C p Number of received packets in the route
v p
YO YO 2 2M 0 1t G
19 , P Number of received packets in all routes
T 0 p ca O p
(o} (o} - Q5 AYY
20 Energy consumption for data transmission
per route in the sensors' area
(¢} - Q@ Q
. . Energy consumption for data transmission
21 O (@] : '
to all routes in the sensors' area
29 (0] 0 w4 0 p Energy consumption for data reception pe
route in the sensors' area
23 0 o Energy consumption for data reception

from all routes in the sensors' area

Table 5 Network and energy parameters of the proposed method in three simulated scenarios

Scenario M a A N O - b d

First 100 2 2000x2000 m2 1000 UTEBOQO  p T ED WO gﬁs 63m
Second 200 4 2000x2000 m?2 1000 U EUIO QO p TU i G @O gi‘ts 63 m
Third 500 6  2000x2000m? 1000 U 7 BH'QO  p T WO gﬁs 63 m
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Table 6: Energyconsumption reduction in the proposed
method ascompared to themethod reported In[29]

Scenario M a Energy reduction
First 100 2 22.73%
Second 200 4 35.57%
Third 500 6 43.53%
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Fig. 14: Average energy consumption per transmitted data
packetsin the route.
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Fig. 15: Comparisoof average energy consumption in each
sampling period in the proposed method and the method

presented in29].
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Sparse signal
Transformation coeffients in the spatial
domain
i-th sensor spatial reading
Coefficient of coherence betweeg and
w matrices
Transformationn spatial domain
Transformationn spatictemporal
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Transformationin temporal doméan
Cell area
Energy consumption for data reception
from all routes in the sensors' area
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per route in the sensors' area
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Number of measurements in temporal
domain
0 Total number of CHs in sensors' area
0 Number of sensors in the cell
YO Number of received packets in all routes
YO Number of received packets in the route
Y Number of transmitted packets in all
routes
Y'Y Number of transmitted packets per route
w Length of data packets
a Number of measurements in the route
i Cell size
i-th vector of measurements vector
belongs ta-th sensor
- Transmitter amplifier parameter
Free space transmitter powemplifier
parameter
i-th column of measurements matrix
belongs ta-th sensor
A Sensing matrix
ATCA Adaptive threshold compression

¢

O'O=EEEW,_\_A—A_

o o O O

Cc:

%0



STCSAF: Spatidemporal Compressive Sensing in Wireless Sensor NetwokaFBased Approach
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