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This study aims to numerically investigate a two dimensional and steady heat 
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Buongiorno model is adopted for nanofluid transport on a free convection flow 

taking the slip mechanism of Brownian motion and thermophoresis into account. 

The Boussinesq approximation is considered to account for buoyancy. The 

boundary layer conservation equations are transformed into dimensionless and 

then elucidated using a robust Keller-box implicit code numerically. The 
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1. Introduction

Enhancement of heat transfer in engineering 
applicants is very important because 
conventional fluid such as oil, water that are used 
in engineering applications possess less thermal 
conductivity. Thermal enhancement of 
convectional fluids can be upgraded by 
dispersion of nano-sized particles into the 
convectional fluids. The resultant combination 
of convectional fluid (base fluid) and nano-sized 

particles (nanoparticles) is known as nanofluid 
[1]. Recently, the studies of nanofluid flows have 
reported significantly in thermal sciences due to 
their thermal performance relative to the regular 
fluids as Wang and Wu reported [2-3]. 
Numerous models such as the single-phase 
model [1], the dispersion model [4], and the non-
homogeneous two-component model [5] have 
been developed to study the transport of 
nanofluid. Specifically, the Buongiorno 
nanofluid transport model is developed on the 
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basis of the slip mechanism of the nanoparticle 
with respect to the relative velocity. By means of 
this model, Beg et al. [6] presented a 
mathematical model for a nanofluid transport 
past a vertical wall with oxytactic 
microorganisms. Das et al. [7] investigated the 
heat source/sink on a transient laminar magnetic 
field with nanoparticle flow using a conventional 
single-phase (homogeneous) model. 
Sheikholeslami and Ganji [8], presented a 
review on the transport of nanofluid and heat 
transfer. Gorla et al. [9] studied the MHD flow 
of dusty fluid with nanoparticles saturated in a 
porous medium. Murthy et al. [10] considered 
the transport of nanofluid embedding non-Darcy 
porous medium. Besthapu et al. [11] studied the 
mixed convection flow with nanoparticles taking 
thermal stratification and viscous dissipation 
into account numerically. Aly [12] examined the 
free convection of nanofluid flow over a circular 
cylinder where the walls are passively controlled 
in a porous enclosure using a finite volume 
method. Most recently, Ahmadi et al. [13] 
studied the thermal conductivity of CuO/EG 
nanofluid by employing a group method of data 
handling and genetic algorithm approaches. 
More works of nanofluids flow and heat transfer 
analysis can be found in the literature [14, 15]. 
Transport phenomena in porous media constitute 
numerous important flow regimes in many 
branches of engineering and applied physics. 
The vast majority of models have considered 
isotropic and homogenous porous media, usually 
employing the Darcy law, which is effective for 
low velocity and viscous-dominated flows. It is 
known that the porous media are heterogeneous 
and yield variable porosity. Initially, Roblee et 
al. [16] studied the flow through media of 
variable radial porosity in the chemical 
engineering system. Later Vafai [17] studied a 
theoretical study in a porous region with inertial 
forces (Forchheimer drag), also presented 
experimental results in detail. Zueco et al. [18] 
employed a network simulation method to study 
the MHD effect on a porous microstructural 
liquid stream with Darcy-Forchheimer forces. 
An interesting investigation on the natural 
convection in Darcian porous media was given 
by Minkowycz and Cheng [19]. Hamzeh et al. 
[20] studied the heat transfer and fluid flow past 
of a sphere. Kumari and Gorla [21] investigated 
the Magneto-convection flow with suspending 
nanoparticles past a wedge in non-Newtonian 

fluid. Kameswaran et al. [22] showed a mixed 
convection flow of nanofluid over porous wavy 
surface. Beg et al. [23] studied numerically the 
flow in orthotropic Darcian porous media from a 
rotating cone. Very recently, Vasu et al. [24] 
investigated the entropy generation analysis in a 
porous medium taking thermally stratification 
into account. Bég et al. [25] investigated heat 
transfer and fluid flow over an inclined plate 
numerically taking Soret/Dufour effects into 
account. Munawar et al. [26] and Yih [27] 
discussed the laminar heat transfer flow over 
a cylinder embedding porous regime. Prasad et 
al. [28] presented a numerical study for the 
multiphysical flow of fluid over a cylinder 
saturating in a variable porosity. Vasu et al. [29] 
analyzed the influence of Soret and Dufour on 
magnetic heat transfer flow over a sphere in 
a porous medium. Satya Narayana and  
Venkateswarlu [30] presented a numerical 
solution for a transient MHD natural convection 
of a nanofluid past a porous plate in a rotating 
system. Satya Narayana et al. [31] presented an 
MHD heat transfer with thermal radiation 
of nanofluid in a porous rotating domain 
numerically. Harish Babu et al. [32] considered 
a steady magnetic flow of a Jeffery nanofluid 
using a non-homogeneous model.  
Motivating the above studies and vital 
application of nanofluid flow in the porous 
regime, the main purpose of the current study is 
to analyze the steady viscous incompressible 
flow of a nanofluid in a non-Darcy porous 
medium over a horizontal cylinder numerically. 
The finite-difference results through the Keller-
box scheme are presented for highly influential 
thermophysical parameters. The study has wide 
applications in heat exchangers, materials 
processing, and geothermal energy storage, etc. 
 
2. Mathematical formulation 

 

Consider a 2-D incompressible free convection 

laminar flow of nanofluid over a non-Darcy 

porous horizontal cylinder. Fig. 1 shows the 

graphical flow configuration. a denotes the 

radius of the cylinder. The coordinates x  and y  

are determined along the perimeter of a circular 

cylinder and normal to the surface, respectively. 

x a =  is an angle between the y -axis and the 

vertically downward line from the center of 
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cylinder (0 )   shown in Fig. 1. g, acts 

downwards. ( )wT T and ( )wC C are wall 

temperature and concentration of the horizontal 

cylinder, respectively. They are more than the 

far-field temperature and concentration. 

Governing conservation equations as below [5, 

14, 15, 27]: 

Continuity equation: 
 

. 0 =v                                 (1)
 

 

Momentum equation: 

 

( ) ( )( )  ( )

2
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f

p f
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Energy equation: 
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Concentration equation: 

 

( )2 21
. B T

C
C D C D T T

t 



+  =  + 


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(4) 

Boundary conditions: 
 

At 0, 0, 0, ,w wy u v T T C C= = = = =    (5) 

As , 0, ,y u T T C C → = → →     (6) 

 

It can be writeen ( ),u v=v . 

In the above equations,  is the dynamic 

viscosity, 
f  and 

p  are the fluid density 

and density of particle, respectively,   is the 

fluid’s volume expansion coefficient, ( )
m

c is the 

heat capacity,
 BD and TD  are the coefficient of 

Brownian diffusion and coefficient of 

thermophoretic diffusion, respectively, mk is the 

thermal conductivity, and g  is the gravity.  

The momentum equation (Eq. (2)) can be written 

by using the proper value of reference pressure, 

as: 
 

( ) ( ) ( )

( )( ) ( )

2 1 sin /

sin /

f

p f

p C T T x a
K
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By means of the boundary-layer approximation 

and Boussinesq approximation, Eqs. (1-4) 

which govern the flow are reduced to: 
 

0
u v

x y
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where  

( )

( )

( )
,
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= =

 

Introducing a stream function   defined by: 

,u v
y x

  
= = −
 

. 

 

So, Eq. (8) is satisfied identically. 

Introducing the suitable dimensionless variables: 

4

4
, , ( , )

x y
Gr f

a a Gr


   


= = =  

 

 
Fig. 1. Schematic of flow configuration.  
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Using dimensionless variables, Eqs. (8-11), are 

obtained in the dimensionless forms as follows: 
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The transformed dimensionless boundary 

conditions are: 
 

0: 0, 0, 1, 1f f  = = = = =    (16a) 

: 0, 0, 0f  → → → →   
(16b) 

 

where   is the azimuthal coordinate,   is the 

non-dimensional tangential coordinate, a =  

is the non-Darcy parameter,
 2
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= are respectively the Schmidt 

number, Brownian motion and thermophoresis 

parameters.  

For the quantities of physical choice, the 

coefficient of skin-friction, local Nusselt, and 

Sherwood number are calculated as: 

 

41
( ,0)

2
fC Gr f =                   (17a) 

4
( ,0)

Nu

Gr
 = −        (17b) 

4
( ,0)

Sh

Gr
 = −      (17c) 

 

3. Solution using Keller-box finite-difference 

code 

 

The numerical analysis integrates the non-

dimensional Eqs. (13-15) subjected to the 

boundary conditions (16) by an implicit finite-

difference approximation with an efficient finite-

difference scheme Keller-box method [33], 

described by Cebeci and Bradshaw [34]. The 

scheme is unconditionally stable. This method 

has been employed for various complex domains 

like aerodynamic problems [35, 36], heat 

transfer in a porous regime [37, 38], and heat and 

mass transfer in a micropolar regime [39-41] 

have employed to study an unsteady heat transfer 

of a non-Newtonian nanofluid. The numerical 

method is not described for the sake of 

concision. The solution process of the Keller-

box method is given in many references 

including Gorla and Vasu [40]. Because of the 

conservation of space, the detailed solution is 

omitted here. Considered a uniform grid of size 

1501 ×31 in the η- region. Computations are 

carried out with 0.1 = , and 0.002 = . For 

the desired accuracy, convergence criterion is 

fixed at 510−  as the change between any two 

successive iterations. Fig. 2 shows the 

representation of the computational cells for the 

Keller-box method after meshing. The results are 

also shown to be grid-independent.  

 

4. Numerical validations 

 

In order to judge the validation of numerical 

outcomes, the current results of the local heat 

transfer coefficient ( ( ,0) − ) are compared with 

results of Merkin [42] and Yih [27] for various 

values of  , for Da → , 0 = , 

Pr 1, 0, 0, 0.wGr Nt Nb Nr f Sc= = = = = = =

Table 1 shows the validation of present result by 

assuming that the porous field and nanofluid 

effects are negated in the models. It is found that 

the current numerical solution is in good 
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compliance. Further, the local heat transfer 

coefficient ( ( ,0) − ) is decreased along the edge 

of the cylinder. Hence a very strong thermal 

enhancement () is achieved past a circular 

cylinder. 

 

5. Results and discussion 

 

This section focuses on the physical insight 

through numerical results of nanofluid transport 

over a cylinder in a non-Darcy porous regime 

taking the Buongiorno-Forchheimer model into 

account. The numerically computed results for 

velocity, temperature, coefficient of skin-

friction, local Nusselt number, nanoparticle 

volume concentration, and local Sherwood 

number for different values of dimensionless 

thermophysical parameters viz., Nb , Nt , Nr , 

 , Da , Sc , Pr , tangential coordinate ( ) are 

presented along the radial coordinate ( )
 
in form 

of tables and figures. The numerical results are 

validated and verified through a comparison 

made with previously reported work. The 

comparisons are found to be in excellent 

compliance  (See Section 4). 

The effect of varying   and Pr on the 

coefficient of skin friction, heat transfer, and 

nanoparticle volume fraction coefficient are 

presented in Table 2. It is found that skin friction 

and coefficients of nanoparticle volume fraction 

increase, whereas heat transfer coefficients 

reduce along the tangential coordinate ( ) for 

 and Pr. It is worth mention that thermal 

enhancement occurs due to the presence of 

nanoparticles. With increasing Pr, the values of 

( ,0) −  significantly increase, whereas 

( ,0)f   and ( ,0) −  values decrease. The 

same tendency is observed and in good 

coincidence with the earlier results by Prasad et 

al. [38]. Also it is found that the reduction of skin 

friction values and heat transfer coefficients are 

happens due to increasing Forchheimer 

parameter. The reverse trend is observed for the 

local mass transfer coefficients. 

Figs. 3-5 describes the influence of Nb  on 

velocity ( f  ), temperature ( ), and nanoparticle 

volume concentration ( ) for water-based 

nanofluids over the horizontal circular cylinder 

regime. Enlarging Nb  leads to a rise in velocity 

as well as temperature whereas the opposite 

trend is observed for nanoparticle volume 

fraction concentration ( ). 

Larger values of the Nb approach to smaller 

nano-particles [5] and this boosts acceleration of 

the hydrodynamics. Also  ( ) decreases with 

increase in the Nb. Figs. 6-8 shows the numerical 

result of the thermophoresis on velocity ( f  ), 

temperature ( ), and nanoparticle volume 

concentration ( ) . Moving of the particles in the 

way of shrinking temperature due to thermal 

gradient forces, the phenomenon is called 

thermophoresis. 

The thermophoretic parameter (Nt) involves in 

Eqs. (14 and 15), and it plays a significantly 

influential in the thermal diffusion and 

nanoparticle diffusion in the domain. As Nt 

increases, the velocity of nanofluid decreases. It 

is also witnessed from Figs. 7 and 8 that, a rise 

in Nt  leads to thermal enhancement and 

nanoparticle concentration increase, i.e., thermal 

and nanofluid volume fraction boundary layer 

increase, so that the thermal layer raises. 
 

 
Fig. 2. Meshing and computational cell. 

 

Table 1. Comparison of ( ( ,0) − ) for various values 

of   for Da → , 0, Pr 1,Gr = = =  

0, 0, 0wNt Nb Nr f and Sc= = = = = . 

 
  

( ,0) −  

Merkin [42] Yih [27] Present results 

0.0 

0.4 

0.8 

1.2 

1.6 

2.0 

2.4 

2.8 

  

0.4212 

0.4182 

0.4093 

0.3942 

0.3727 

0.3443 

0.3073 

0.2581 

0.1963 

0.4214 

0.4184 

0.4096 

0.3950 

0.3740 

0.3457 

0.3086 

0.2595 

0.1962 

0.42145 

0.41835 

0.40897 

0.39532 

0.37451 

0.34660 

0.30897 

0.25917 

0.19654 
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Larger thermophoresis indicates the durable 

movement of nano-particles with respect to the 

rate of heat temperature away from the cylinder 

surface.  

Figs. 9-11 demonstrate the impact of the 

buoyancy ratio parameter on velocity ( f  ), 

temperature ( ), and nanoparticle volume 

concentration ( )  for water-based nanofluid. 

With increasing Nr  values, the velocity profile 

is strongly decreases in the boundary layer; the 

tendency of velocity in Fig. 9 can be seen. 

However, from Figs. 10 and 11, the opposite 

behavior is seen in profiles of temperature   and 

nanoparticle concentration .  

Figs. 12-14 display the influence of Forchheimer 

inertial parameter ( ) on the flow variables, 

velocity ( f  ), temperature ( ), and nanoparticle 

volume concentration ( ) in the boundary layer 

regime of nanofluid flow past a cylinder. 

Quadratic Forchheimer drag appears in Eq. (13) 

and is directly proportional to Λ. 

Form Fig. 12, it is evident that increasing Λ 

clearly floods the nanofluid momentum 

development, and decreases the flow for some 

distance near the cylinder viscous region, later it 

reverses the trend and asymptotically reaches the 

far-field flow velocity. Also, it is found that an 

increase in Λ enhances thermal boundary layer 

thickness and nanoparticle concentration.   

Figs. 15-17 depict the hydrodynamics, heat 

transfer, and nanofluid volume fraction behavior 

past the cylinder for different values of . 

Velocity clearly slows down with increasing  

values (Fig. 15) for some distance. Conversely, 

a large increase in   and   occurs with increasing 

 values, as shown in Figs. 16 and 17. 
Temperature and nanofluid volume fraction are 
both enhanced. 

The influence of Nb and Nt on ( ,0)f  , ( ,0) −

and ( ,0) −  over cylinder surface are presented 

in Figs. 18–20 and Figs. 21–23, respectively.  

With increasing influential nanofluid slip 

parameters (Nb and Nt), corresponding ( ,0)f  ,

( ,0) −
 
and ( ,0) −  are consistently enhanced. It 

implies that the gradients of flow are 

considerably increased along the surface of 

cylinder. 

It is worth to mention that the enhancement 

occurs due to the presence of nanoparticles in the 

boundary layer regime. Figs. 24–26 depicts the 

distribution of ( ,0)f  , ( ,0) −  and ( ,0) −
 
along 

the cylinder periphery ( coordinate) for various 

values buoyancy ration parameter ( Nr ). For 

increasing Nr, corresponding to lesser influences 

of flow gradient, wall shear stress is steadily 

condensed. With growing Nr , the local 

Nusselt number, and local Sherwood number 

considerably decreases and increases, 

respectively. For increasing Nr, corresponding to 

lesser influences of flow gradient, wall shear 

stress is steadily condensed. With growing Nr

, the local Nusselt number, and local Sherwood 

number considerably decreases and increases, 

respectively. 

 
Table 2. Values of skin friction coefficient ( ,0)f  , 

heat transfer coefficient ( ,0) − and nanoparticle 

volume fraction coefficient  ( ,0) −  for different 

values of Prandtl number Pr, non-Darcy parameter  

and tangential coordinate ξ  when Gr = 1, Nt = Nr 

= Nb = 10-5, Da = 0.1, Sc = 0.6. 

 
 

 
Fig. 3. Influence of Nb on velocity profile. 
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Fig. 4. Influence of Nb on temperature distribution. 

 
Fig. 5. Influence of Nb on nanofluid volume fraction. 

 
Fig. 6. Influence of Nt  on velocity profile. 

 
Fig. 7. Influence of Nt  on temperature distribution. 

 

 

Fig. 8. Influence of Nt  on nanofluid volume fraction. 

 

Fig. 9. Influence of Nr  on velocity profile. 

 
Fig. 10. Influence of Nr  on temperature 

distribution. 

 

Fig. 11. Influence of Nr  on nanofluid volume 

fraction. 
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Fig. 12. Effect of   on velocity profile. 

 
Fig. 13. Effect of   on temperature distribution. 
 

 
Fig. 14. Influence of   on nanofluid volume 
fraction. 
 

 
Fig. 15. Influence of   on velocity profile. 

 
Fig. 16. Impact of   on temperature distribution. 

 
Fig. 17. Impact of   on nanofluid volume fraction. 

 
Fig. 18. Behaviour of local skin friction coefficient 

for various Nb. 

 
Fig. 19. Behavior of local Nusselt number for 

different Nb . 

 
Fig. 20. Behaviour of ( ,0) − results for different

Nb . 

 
Fig. 21. Behaviour of local skin friction coefficient 

for different Nt . 
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Fig. 22. Behavior of ( ,0) − results for different Nt . 

 
Fig. 23. Behavior of ( ,0) −  results for different Nt . 

 
Fig. 24. Behavior of local skin friction coefficient for 

various Nr . 

 
Fig. 25. Behavior of ( ,0) −  results for different

Nr . 

 
Fig. 26. Behavior of local Sherwood number results 

for different Nr . 

 

6. Conclusions 

 

In this study, the numerical investigation of free 

convection of nanofluid flow past a horizontal 

circular cylinder embedded in a non-Darcy 

porous medium is conducted. Buongiorno-

Forchheimer model is employed for nanofluid 

flow modeling in a porous medium. The 

transformed nonlinear system is solved using 

Keller’s-box method. Furthermore, validation of 

current solutions is done by comparing it with 

the existing solution in the literature. The 

important outcomes can be concise as: 

1. Velocity and temperature are increases with 

increase in Nb but nanoparticle volume fraction 

decreases. 

2. As thermophoresis increases the heat transfer 

increases in the boundary layer, and 

simultaneously intensifies particle deposition 

from the fluid region, leading to an increase in 

nanoparticle volume fraction. 

3. With the increase in the buoyancy ratio 

parameter, the velocity profile strongly increases 

the boundary layer regime. 

4. It is evident that increasing Λ clearly swamps 

the nanofluid momentum development, 

decreases the flow for some distance near the 

cylinder viscous region, later reverses the trend, 

and asymptotically reaches the far-field flow 

velocity. 

5. The gradients of flow ( i. e. ( ,0)f  , ( ,0) −
 
and 

( ,0) −  ) are enhanced along the surface of 

cylinder with increase in nanofluid slip 

parameters (Nt and Nb). 
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