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Nomenclature 

CD Drag coefficient 

D Hole diameter, [m] 

h 

H 

Channel height, [m] 

Height of obstacle, [m] 

k Turbulent kinetic energy, [m²/s²] 

L Channel width, [m] 

pref Reference.pressure, [Pa] 

Reh Reynolds number on the  channel 

height 

ReH Reynolds number on the cube 

height 
Ub Mean bulk velocity, [m/s] 

u 

𝑢̅𝑖

u̅j

𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅

y+ 

ε 

ρ 

µ 

µt 

ω 

LDV 

LES 

Velocity in x direction, [m/s] 

Time averaged.velocity in xi 

direction,  [m/s] 

Time averaged.velocity in xj 

direction, [m/s] 

Turbulent stresse, [m²/s] 

Distance without dimensions  

Turbulent dissipation energy 

density,  [kg/m3] 

Dynamic viscosity, [Pa.s] 

Turbulent.viscosity, [Pa.s] 

Specific dissipation, [1/s] 

Subscripts 

Laser-Doppler velocimetry 

Large Eddy simulation 

https://www.powerthesaurus.org/without_dimensions/synonyms
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RANS 

 

URANS 

 
SST 

ANSYS 

CFX 

Reynolds-averaged Navier–

Stokes equations 

Unsteady Reynolds-averaged 

Navier–Stokes equations 
Shear stress transport 

Computational fluid dynamics 

software 

  

1. Introduction 

 

The studies of flow around a bluff body 

represent references for researchers because they 

have a major contribution to understand the 

fundamental basics of building aerodynamics, 

such as the prediction of wake flow behind 

building structures, study of pollution around the 

urban area, and also improving the performance 

of air flat-plat solar thermal collector with baffle 

by understanding the internal aerodynamics of 

this type of flow to minimize the dynamic losses. 

Generally, the bluff body generates complex 

flow structures, including separation, 

reattachment, and vortical patterns. These flow 

structures are particularly complex because there 

is a phenomenon of turbulence.  

The main experimental measurements for the 

wall mounted cube was developed by Martinuzzi 

and Tropea [1]. They examined the effects of the 

three-dimensional flow field around prismatic 

obstacles with different widths. They used 

various flow visualization techniques such as 

laser visualization, crystal violet, and oil film by 

static pressure measurements at Reynolds 

number of 40.000 based on the cube height, and 

presented the velocity profiles, streamlines, and 

pressure coefficient data. 

Hussein and Martinuzzi [2] used a similar 

experiment with a different cubic obstacle. With 

the use of LDA (Doppler Anemometry Laser), 

they presented the rate of turbulence dissipation, 

production conditions, as well as the transport 

and equilibrium of the equation of transport of 

turbulent kinetic energy. The experiment 

helped to identify different scales appropriate 

to the different flow characteristics around the 

cube (e.g., wake, boundary layer, and horseshoe 

vortex). Becker et al. [3] studied the case of a 

three-dimensional wind around a prismatic 

obstacle for a Reynolds number 

20000≤Re≤70000. The addiction of the flow 

structure with different angles of attack was 

examined. The results allowed to show a 

different topology of the "vortex arc" for 

different angles of attack. In the case of the 

tandem obstacles aligned in the direction of 

flow. Oke [4] studied the H / E and L / H, where 

L and E respectively indicate the width of a 

building and Spacing between two buildings in 

the direction of flow. The experience showed the 

existence of three regimes, depending on the size 

of the buildings and the distance separating 

them, isolated obstacle flow, wake interference 

flow and skimming flow. Meinders and Hanjalic 

[5] studied the case of a tandem of staggered 

cubes for zero transverse and longitudinal 

spacings lower than 3H, where H is the height of 

the cubes. Presence of the downstream obstacle 

creates an asymmetry of the mean flow around 

two obstacles. Vortices structures around a 

surface-mounted pyramid were investigated by 

Mazen et al. [6] using Oil-film flow 

visualizations and LDV techniques for topology 

principles and velocity measurements. They 

found three pairs of vortices; a hairpin vortex 

behind the pyramid apex, a pair of vortex formed 

on opposite pyramid side face corners, and a pair 

of counter-rotating vortex formed vertically 

downstream of the obstacle. The study of the 

variation in Reynolds number in flow around a 

suspended cube was reported by Khan et al. [7]. 

The experiment was done on a very wide range 

of Reynolds number (500≤Re≤55000) whither 

authors showed that the stream was seen to be 

structureless at a greater Reynolds number and 

drag coefficients were obtained between 0.63 

and 0.89. 

Regarding the numerical approach, diverse 

researchers have considered the learning of the 

flux around bluff body experimentally using 

different turbulence models. Rodi [8] studied 

numerically the flow around a cubic obstacle of 

height H in a channel. The authors tested two 

versions of turbulence model of RANS and LES 

and compared them with the experimental 

results of Martinuzzi and Tropea [1] with a 

Reynolds number based on the height of the 

obstacle ReH = 40000. They found that the RANS 

model overestimated the reattachment length 

due to the stable nature of the model that ignores 

the unsteady phenomenon of vortex shedding. In 

https://www.google.dz/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwipzLjY1dfaAhXIvRQKHUCxBDUQFggzMAE&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FReynolds-averaged_Navier%25E2%2580%2593Stokes_equations&usg=AOvVaw1HqHSPOgR8R6VqW1EE5piI
https://www.google.dz/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwipzLjY1dfaAhXIvRQKHUCxBDUQFggzMAE&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FReynolds-averaged_Navier%25E2%2580%2593Stokes_equations&usg=AOvVaw1HqHSPOgR8R6VqW1EE5piI
https://www.google.dz/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwipzLjY1dfaAhXIvRQKHUCxBDUQFggzMAE&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FReynolds-averaged_Navier%25E2%2580%2593Stokes_equations&usg=AOvVaw1HqHSPOgR8R6VqW1EE5piI
https://www.google.dz/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwipzLjY1dfaAhXIvRQKHUCxBDUQFggzMAE&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FReynolds-averaged_Navier%25E2%2580%2593Stokes_equations&usg=AOvVaw1HqHSPOgR8R6VqW1EE5piI
https://www.sciencedirect.com/science/article/pii/S0894177717303965#!
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another work, Iaccarino and Durbin [9] studied 

numerically the flow around a cube, referring to 

the Hussain and Martinuzzi experiment. For the 

calculation, two approaches of the RANS 

(steady) and URANS (unsteady) models were 

taken, and they used the v2-f turbulence model. 

The results revealed that the URANS solution 

(unsteady RANS) is more realistic than the RANS 

solution, and gives low cost results compared to 

those of the LES. Aliane et al. [10] gave 

numerical testing of flow around two types of 

obstacles: a rectangular obstacle and a 

rectangular obstacle with an upstream rounded 

edge with a radius of curvature 0.2 times the 

height of the obstacle in the two-dimensional 

simulation. The impact of the curvature on the 

recirculation zones in three positions, relative to 

the obstacle and velocity profiles, were 

presented. Sari-hassoun et al. [11] arrived to 

decrease the wake zone behind the obstacle; they 

changed the form of the upstream edge. Rostane 

et al. [12] studied two types of obstacles; 

prismatic with the sharp edges and prismatic 

with the rounded downstream edge. The authors 

analyzed the aerodynamic phenomena as the 

incipient structure of vortices near the obstacles 

and the effect of the curvature of the downstream 

edge on the reattachment area for a Reynolds 

number Reh=105. In another context, some 

researchers [13 and 14] studied the flow around 

perforated elements using new models. 

Mousazadeha et al. [15] analyzed laminar 

convective heat transfer around two cubic 

obstacles placed in tandem and staggered rows. 

The test results demonstrate that the temperature 

distribution is highly reliant on the flow structure 

and the drag coefficient is higher in the tandem 

arrangement.  

The contribution of the present study is to 

analyze the impact of insertion holes in the 

middle of obstacles in order to control the 

amplitude of the separation, reattachment length, 

and the swirl constitutions in the three-

dimensional simulation. To perform this, the 

impact of three radii of hole: D/H=0.08, 0.20 and 

0.32, where D is the diameter of the hole and H 

is the height of the cube, is investigated. The 

simulation is made for a Reynolds number 

ReH=4.104. 

 

2. Problem statement 

2.1. Geometrical models 

 

The different models of obstacles used in this 

study are surface-mounted cubes with and 

without holes. The illustration of the problem is 

summarized in Fig. 1. The diameter of holes is 

varied between D/H=0.08, 0.2 and 0.32 (Fig. 2). 

Four configurations are employed (Table 1). The 

cube height is H=2.5 mm, and the elevation of 

the channel is h=2H. 

 
Table 1. Resume of the obstacle geometries and 

grids. 

 D/H L/H h/H Grid 

Configuration 1 Without hole 7 2 2159841 

Configuration 2 0.08 7 2 2285203 

Configuration 3 0.2 7 2 2446589 

Configuration 4 0.32 7 2 2549560 

 

 
Fig. 1. Geometry of the studied cases. 

 

 
Fig. 2. Different model of bluff body. 

 

2.2. Mathematical model 

 

In this study, the unsteady Reynolds-averaged 

Navier-Stokes (URANS) equations are used. 

The governing equations for conservation of 

mass and momentum are: 
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𝜕𝑢̅𝑖

𝜕𝑥𝑖

  = 0                                   (1) 

 

 
𝜕𝑢̅𝑖

𝜕𝑡
+ 𝑢̅𝑗

𝜕𝑢̅𝑖 

𝜕𝑥𝑗

= −
1

𝜌

𝜕𝑝̅

𝜕𝑥𝑖

+ 𝜈
𝜕2𝑢̅𝑖 

𝜕𝑥𝑗
2 −

𝜕𝑢𝑖
′ 𝑢𝑗

′̅̅ ̅̅ ̅

𝜕𝑥𝑗

         (2) 

 

For the treatment of turbulence, the model of 

Menter [16] k-ω SST (Shear Stress Transport) is 

used. This model combines two models: k-ω 

model, proposed by Wilcox [17] for the area 

close to the wall, and the standard k-ε model, 

proposed by Jones and Launder [18], for the area 

far from the wall. Menter et al. [19] gave two 

equations for k and ω as follows: 

 
 𝐷(𝜌𝑘)

𝐷𝑡
= 𝑃̃𝑘 − 𝛽∗𝜌𝜔𝑘 +

𝜕

𝜕𝑥𝑗

[(𝜇 + 𝜎𝑘𝜇𝑡)
𝜕𝑘

𝜕𝑥𝑗

]  (3) 

 

𝐷(𝜌𝜔)

𝐷𝑡
= 𝛼𝜌𝑆2 − 𝛽∗𝜌𝜔2 +

𝜕

𝜕𝑥𝑗

[(𝜇 + 𝜎𝜔𝜇𝑡)
𝜕𝜔

𝜕𝑥𝑗

] 

                   + 2(1 − 𝐹1)𝜌𝜎𝜔2

1

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗

                  (4) 

 

where 𝑃̃𝑘 is a production limiter for preventing 

accumulation of turbulence in stagnation areas 

as: 

 

𝑃̃𝑘 = 𝑚𝑖𝑛 [𝜇𝑡
𝜕𝑢𝑖

𝜕𝑥𝑗
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑖

𝜕𝑥𝑗
, 10𝛽∗𝜌𝜔𝑘)]           (5) 

 

and 𝐹1is a blending function as: 

 

𝐹1 =  𝑡𝑎𝑛ℎ ([𝑚𝑖𝑛 {
𝑚𝑎𝑥 (

√𝑘

𝛽∗𝜔𝑦
,

500𝜈

𝑦2𝜔
) ,

4𝜌𝜎𝜔2𝑘

𝐶𝐷𝑘𝜔𝑦²

}]

4

)     (6) 

 

Here, y is the distance to the nearest wall. In the 

near-wall region, 𝐹1 = 1, while it goes to zero in 

the outer region 𝐶𝐷𝑘𝜔 as given bellow: 

 

𝐶𝐷𝑘𝜔 = 𝑚𝑎𝑥 (2𝜌𝜎𝜔2
1

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
, 10−10)    (7) 

 

The constants of the model are: 

 
 𝐶𝜇 = 0.09, 𝜎𝑘1 = 0.85034, 𝜎𝑘2 = 1, 𝜎𝜔1 = 0.5, 

    𝜎𝜔2 = 0.85616, 𝛼1 = 0.5532,  𝛼2 = 0.4403 ,   
 𝛽1 = 0.075, 𝛽2 = 0.0828, 𝛽∗ = 0.09, 

𝛼1 = 0.31,     𝑐1 = 10. 

The k-ω SST model provides highly accurate 

predictions of the beginning and the amount of 

flow separation under adverse pressure 

gradients. It is recommended for high accuracy 

boundary layer simulations, so it is the ideal 

model for the present simulation. 

 

2.3. Numerical approach 

 

An unsteady 3D flow is used for these 

configurations, employing the ANSYS CFX-13 

code. The size of the computational domain is 

11H × L × 2H. The inlet of the computational 

field situated at an interval of 3H upstream of the 

cube, and the fully developed velocity profiles 

are used with the Reynolds number (Reh=Ubh/ν) 

equals 8.0×104. At the outlet of the system, 

constant pressure is maintained  pout=pref. At the 

solid walls, no-slip conditions are imposed 

(upper surface, lower surface, and cube). The 

side boundaries are considered as slip surfaces, 

employing the symmetry conditions. The 

hexahedral structured meshes are used to solve 

the fluid dynamics equations (Fig. 3). The 

numbers of meshes are presented in Table 1. 

Turbulence model k-ω SST is used, so the mesh 

must be refined close to the solid walls (y+<1). 

Integration on finite volume of the equations 

described above provides an ensemble of 

discrete equations. The numerical scheme 

upwind of second order is taken to discretize the 

convective terms. The velocity–pressure 

coupling is performed using a coupled solver to 

resolve the hydrodynamic equations (for u, v, w, 

p) as a single system (the method proposed by 

Rhie and Chow [20]). 
 

 
Fig. 3. Hexahedral mesh for configuration 1. 
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3. Results and discussion

A preliminary study of the dependence of the 

calculation grid is carried out. Three grids 

comprising 1182513, 2159841 and 2658475 

hexahedral elements are tested (Fig. 4). This 

study proves that there are relatively small 

differences between the three grids. The grid 

comprises 2159841 elements is the best 

compromise between precision and calculation 

time. 

Fig. 4. Mesh sensitivity test. 

In this simulation, the model of turbulence and 

the numerical method, used by studying the case 

of the configuration 1, are validated, and the 

results obtained from the simulation are 

compared to the experimental work of 

Martinuzzi and Tropea [1]. Fig. 5(a-c) depicts 

the velocity profiles in the flow direction in the 

area close to the obstacle for three separate 

sections of x/H=0.5, x/H=1, and x/H=1.5 for the 

Reynolds number Reh=105. The findings of the 

present simulation are almost coherent with 

those found experimentally by Martunizzi and 

Tropea [1]. 

The numerical predictions of the different vortex 

structures around the obstacle in the region close 

to the cube have been compared and validated by 

the experimental oeuvre of Hussein and 

Martinuzzi [2] for a Reynolds number 

Reh=8,0×104 (Fig. 6). 

A recirculation zone emerged upstream from the 

obstacle blocks by the leading face of the cube 

(zone A of the study conducted by Hussein and 

Martinuzzi [2] and zone A' of the present work). 

Above the cube, the two figures (Fig. 6(a) and 

(b)) show the detachment point in the leading 

edge of the cube (points C and C'). The two 

figures also show the recirculation region 

downhill of the obstacle and indicate a very great 

resemblance (zones B and B'). 

Fig. 5. Velocity curves in the plane z/H=0 at the 

positions of(a) x/H=0.5, (b) x/H=1, and (c) x/H=1.5. 

(a) 

(b) 

(c)
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Fig. 6. Streamlines on plane z/H=0;(Reh=8,0 × 104); 

(a) Exp. [2] (see Ref. [21]), and (b) k −ωSST. 

 

Table 2 gives the numerical predictions of 

separation and reattachment length of the flow. 

The comparison of the present results with those 

reported by other authors shows good 

agreement. 

 
Table 2. Lengths for reattachment: XR/H, and 

separation:XS/H. 

 

Figs. 7-10 show the perspective views of flow 

field and vortices for the four studied cases; 

horseshoe vortex (D), side vortex (E), arc-

shaped vortex (F), separation (G), and 

reattachment (H) points can be seen. 

 

 

 
   Fig. 7. 3D streamlines (cube without hole). 

 

 
Fig. 8. 3D streamlines (D/H=0.08). 

 

 
Fig. 9. 3D streamlines (D/H=0.2). 

 

 
Fig. 10. 3D streamlines (D/H=0.32). 

 

 

Contribution Model XR /H XS/H 

Martinuzzi and 

Tropea [1] 
Experiments 1.040 1.612 

Rodi [8] 
LES 0.998 1.432 

RANS 0.950 2.731 

Shah [22] LES 1.080 1.690 

Iaccarino and 

Durbin [9] 

RANS Steady 0.640 3.315 

RANS Unsteady 0.732 1.876 

Breuer et al. [23] 
LES 

(Smagorinsky) 
1.287 1.696 

Yakhot et al. [24] DNS 1.21 1.5 

Present work k-ω SST 0.874 1.678 

F 

D 

G 
E 

H 

(a) 

(b) 
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Fig. 11. 2D streamlines in z/H=0 plane (cube without 

hole). 

Fig. 12. 2D streamlines in z/H=0 plane (D/H=0.08). 

Fig. 13. 2D streamlines in z/H=0 plane (D/H=0.2). 

Fig. 14. 2D streamlines in z/H=0 plane (D/H=0.32). 

Table 3. Lengths for reattachment: XR/H, and 

separation: XS/H for various studied cases. 
case Without hole D/H=0.08 D/H=0.2 D/H=0.32 

XR/H 1.678 1.87 1.94 1.71 

XS/H 0.874 0.967 0.978 0.97 

Figs. 11-14 depict streamlines at the symmetry 

plane of the channel for the four configurations. 

For the case of the cube without hole (Fig. 11), 

there is the appearance of three vortex regions: 

upstream and above and downstream of the 

cube. In the case of the obstacle with a hole of 

diameter D/H=0.08 (Fig. 12), the center of the 

vortex behind of the cube shifts to the right due 

to the jet coming out of the orifice. With the 

increase in the diameter of the orifice (Fig. 13) 

(D/H=0.2), the jet deflects the downstream 

vortex downwards, allowing the vortex, above 

the obstacle, to lean down. Also, the appearance 

of another swirl is observed just above the jet, 

and this may be due to the blocking the 

swirling detachment in this area. For the case 

of the obstacle with a hole of diameter equals 8 

mm (Fig. 14), the downstream vortex is still 

leaning downwards by the force of the jet with 

increasing the size of the new vortex and the 

intensification of the vortex which is above the 

obstacle with a shift to the right. 

Table 3 shows the values of the separation length 

XS/H and reattachment XR/H of the fluid respect 

to the obstacle. It is noticed that the reattachment 

length increases by adding the hole because of 

the impact of the jet on the wake which is 

downstream of the obstacle (pushing it), and it is 

greater for the case D/H=0.2. Also, it is noted 

that the length of reattachment XR/H for the case 

D/H=0.32 is lower than that of cases D/H=0.2 

and D/H=0.08 due to the stronger jet, this jet 

presses the downstream vortex down. 

The visualization of the various swirl forms 

indicated above gives a qualitative vision of the 

evolution of flow in the canal on each side of 

every obstacle model. Then, it is necessary to 

make a quantitative study which is 

characterized by the velocity profiles to 

define the problem under investigation. The 

velocity profiles in the flow direction are 

carried out for three different positions in the 

symmetry plane for different locations of 
x/H= -0.68 (Fig. 15), x/H=0.5 (Fig. 16), and 
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x/H=1.52 (Fig. 17). The distance y/H is taken 

between 0≤y/H≤2 for the first and third positions 

and 1≤ y/H≤2 for the second position. 

According to Figs. 15 and 16, the velocity curves 

in the x direction are almost identical for the four 

cases with the presence of negative velocities 

which is due to the presence of the recirculation 

region upstream and on top of the obstacle. 

Fig. 17 can be divided into two parts: above 

y/H=0.75, in which the velocity profiles are 

almost identical, and between 0 and 0.75, in 

which the velocity profiles of the cases of a cube 

with no hole and the cube with D/H=0.08 are 

identical. However, for the other cases, they 

have larger profiles due to the presence of the 

second vortex and jet. 

Fig. 15. Velocity curves in x direction on the plane 

z/H=0 at x/H =-0.68.  

Fig. 16.  Velocity curves in x direction on the plane 

z/H=0 at x/H =0.5. 

Fig. 17 . Velocity curves in x direction on the plane 

z/H=0 at x/H=1.52. 

The results of turbulence kinetic energy are 

presented in Figs. 18-21. The energy is higher on 

top of the obstacle, it is more intense for the 

obstacle without hole. The intensity decreases as 

the hole diameter increases (94.97 m²/s² for the 

obstacle without hole, 91.46 m²/s² for the 

obstacle with a hole D/H=0.08, 85.56 m²/s² for 

the obstacle with a hole D/H=0.2, and 86.09 

m²/s² for the obstacle with a hole D/H=0.32). It 

is noted that the turbulence kinetic energy 

increases at the level of the jet (the exit of the 

hole). 

Investigating the fluid behavior from the 

viewpoint of dynamic on the models of obstacles 

is translated by the study of two resistances:  the 

wall strength due to the viscous force and the 

resistance form of the obstacle. Both insert the 

notion of drag coefficient. Table 4 gives the drag 

coefficients for various treated cases.  

It is noted that the drag coefficient is constant for 

the three configurations (without hole, 

D/H=0.08 and D/H=0.29), except for the 

D/H=0.32 where it decreases by about 10% due 

to the small displacement of the swirling 

wake downstream of the obstacle away from 

the wall of the cube. So, the obstacle with a 

hole of diameter D/H=0.32 ensures a reduction 

in pressure losses comparing with other cases. 
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Fig. 18. 2D contour of turbulence kinetic energy in 

z/H=0 plane (without hole). 

Fig. 19. 2D contour of turbulence kinetic energy in 

z/H=0 plane (D/H=0.08). 

Fig. 20. 2D contour of turbulence kinetic energy in 

z/H=0 plane (D/H=0.2). 

Fig. 21. 2D contour of turbulence kinetic energy in 

z/H=0 plane (D/H=0.32). 

Table 4. Drag coefficients obtained for all the 

geometries studied 

Case 
Without 

hole 
D/H=0.08 D/H=0.2 D/H=0.32 

Drag 

coefficient 

(CD) 

1.441 1.494 1.429 1.294 

4. Conclusions

In this work, a three-dimensional study of 

turbulent flow around a bluff body is conducted 

to analyze the effect of hole insertion, founded 

on the URANS approach and employing the 

ANSYS-CFX 13 code. The k-ω SST turbulence 

model is chosen to resolve the averaged Navier-

Stokes equations. The model of turbulence and 

the numerical method are validated by studying 

the case of the obstacle with no hole, and the 

results obtained from the simulation are 

compared to the experimental works available in 

the literature. 

Flow velocity profiles were validated for 

Reynolds number Reh = 8.0 × 104 and 105 in the 

zone near the bluff body. The findings of the 

simulation used in the present study are almost 

coherent with those experimentally found and 

reported in the literature. 

The figures of the streamlines show the structure 

of the nascent vortices around each type of 

obstacle, and there is vortex formation upstream, 

above and downstream of the cube. There is also 

the appearance of another swirl downstream of 

the cube above the jet for obstacle models with a 

hole having a diameter of D/H=0.2. 

The reattachment length increases by adding the 

hole. For the streamwise velocity profiles, there 

is no significant change in upstream and on the 

top of the obstacle, but in downstream, the 

values of velocity increases with the increase in 

the diameter of the holes. 

The turbulence kinetic energy is higher on the 

top of the obstacle; it is more intense for the 

obstacle with no hole, and the intensity decreases 

as the hole diameter increases. 

Concerning the pressure loss, this study shows 

that only the cube with a hole, having a diameter 

of D/H=0.32 ensures an about 10% 

improvement. 

References 

[1] R. Martinuzzi, C. Tropea, "The flow

around a surface-mounted prismatic

obstacle placed in a fully developed

channel flow", J. Fluids Eng, Vol. 115, No.

1, pp .85-92, (1993).

[2] H. J. Hussein, R. J. Martinuzzi, "Energy

balance for the turbulent flow around a

surface mounted cube placed in a channel",

Phys. Fluids, Vol. 8, No. 3, pp. 764-780,

(1996).

[3] S. Becker, H. Lienhart, F. Durst, "Flow

around three-dimensional obstacles in



JCARME        B. Rostane, et al. Vol. 9, No. 1 

82 

boundary layers", Journal of Wind 

Engineering and Industrial Aerodynamics, 

Vol. 90, No. 4-5, pp. 265-279, (2002). 

[4] T. R. Oke, "Street design and urban canopy

layer climate". Energy and Buildings, Vol.

11, No.1-3, pp. 103-113, (1988).

[5] E. R. Meinders, K. Hanjalic, "Experimental

study of the convective heat transfer from

in-line and staggered configurations of two 

wall-mounted cubes". Int. J. Heat Mass 

Trans., Vol.45, No. 3 pp.465-482, (2002). 

[6] M. Mazen, R.J. Martinuzzi, "Vortical

structures around a surface-mounted

pyramid in a thin boundary layer" , Journal

of wind engineering and industrial

aerodynamics, Vol. 96, No. 6-7, pp. 769-

778,(2008).

[7] M. H. Khan, P. Sooraj, A. Sharma, A.

Agrawal, "Flow around a cube for

Reynolds numbers between 500 and

55,000" Experimental Thermal and Fluid

Science,Vol.93, pp. 257-271,(2018).

[8] W. Rodi, "Comparison of LES and RANS

Calculation of the flow around bluff

bodies", Journal of Wind Engineering and 

Industrial Aerodynamics", Vol. 69-71, pp. 

55-75, (1997).  

[9] G. Iaccarino, P. Durbin, "Unsteady 3D

RANS simulations using the v2-f model",

Annual Research Briefs, Center for 

Turbulence Research, Stanford Univ., 

Stanford, CA, 2000, pp. 263–269, (1997).  

[10] K. Aliane, "Passive control of the turbulent

flow over a surface-mounted rectangular

block obstacle and a rounded rectangular

obstacle", International. Review of

Mechanical. Engineering, Vol. 5, No. 2,

pp. 305-314, (2011).

[11] Z. Sari-hassoun, K. Aliane, O. Sebbane,

"Numerical simulation.study of

the.structure of the separated flow around

obstacles: curved edge effect",

International Journal on Heat and Mass

Transfer - Theory and Applications", Vol.

1, No. 5, pp. 276-284 (2013).

[12] B. Rostane, K. Aliane, S. Abboudi, "Three

dimensional.simulation for turbulent.flow

Around Prismatic Obstacle with. Rounded

downstream edge using the k-ω SST

model", International Review of.

Mechanical. Engineering. Vol. 9, No. 3, 

pp. 266-277, (2015). 

[13] M. Dehghan, Y. Rahmani, D.  D. Ganji, S.

Saedodin,M. S. Valipour, S. Rashidi ,

"Convection- radiation heat transfer in

solar heat exchangers filled with a porous

medium: Homotopy perturbation method

versus numerical analysis" Renewable

Energy, Vol. 74, pp. 448-455, (2015).

[14] M. Barzegar Gerdroodbary, D. D. Ganji,

Y. Amini "Numerical study of shock wave

interaction on transverse jets through

multiport injector arrays in supersonic

crossflow" ActaAstronautica, Vol. 115, pp.

422-433,(2015).

[15] S. M. Mousazadeh, M. M. Shahmardan, T.

Tavangar, Kh. Hosseinzadeh, D. D. Ganji,

"Numerical  investigation on convective

heat transfer over two heated wall-

mounted cubes in tandem and staggered

arrangement" Theoretical and Applied.

Mechanics Letters, Vol. 8, No. 3, pp. 171-

183, (2018).

[16] F. Menter, "Two-equation eddy-viscosity.

turbulence models for engineering

application", AIAA Journal, Vol. 32, No. 8,

pp. 1598-1605, (1994).

[17] D. C. Wilcox, Turbulence Modeling for

CFD Second Edition, D.C.W. Industries,

(1998).

[18] W. Jones and B. Launder, "The calculation

of low-Reynolds-number phenomena with

a two-equation model of turbulence",

International Journal of Heat and Mass

Transfer, Vol. 16, No. 6, pp. 1119-1130,

(1973).

[19] F. Menter, M. Kuntz, and R. Langtry, "Ten

years of industrial experience with the.

SST turbulencemodel turbulence", Heat

and Mass Transfer 4, Begell House, Inc,

(2003).

[20] C. M. Rhie, W. L. A Chow, "Numerical

Study of the Turbulent Flow Past an

Isolated Airfoil with Trailing Edge

Separation", AIAA journal, Vol. 21, No.

11, pp. 1525-1532. (1983).

[21] D. Lakehal, W. Rodi,"Calculation of the

flow past a surface mounted cube with two-

layer turbulence models". Journal of Wind.

Engineering and Industrial.

http://www.refdoc.fr/Rechercheannee?issn=0167-6105
http://www.refdoc.fr/Rechercheannee?issn=0167-6105
http://www.refdoc.fr/Rechercheannee?issn=0167-6105
https://www.sciencedirect.com/science/article/pii/S0894177717303965#!
https://www.sciencedirect.com/science/article/pii/S0894177717303965#!
https://www.sciencedirect.com/science/article/pii/S0894177717303965#!
https://www.sciencedirect.com/science/article/pii/S0894177717303965#!
https://www.sciencedirect.com/science/article/pii/S0894177717303965#!
https://www.sciencedirect.com/science/journal/08941777/93/supp/C
https://www.sciencedirect.com/science/journal/00945765
https://www.sciencedirect.com/science/journal/00945765/115/supp/C
https://www.sciencedirect.com/science/article/pii/S2095034918301065#!
https://www.sciencedirect.com/science/article/pii/S2095034918301065#!
https://www.sciencedirect.com/science/article/pii/S2095034918301065#!
https://www.sciencedirect.com/science/article/pii/S2095034918301065#!
https://www.sciencedirect.com/science/article/pii/S2095034918301065#!
https://www.sciencedirect.com/science/article/pii/S2095034918301065#!
https://www.sciencedirect.com/science/journal/20950349
https://www.sciencedirect.com/science/journal/20950349
https://www.sciencedirect.com/science/journal/20950349/8/3


JCARME     Influence of insertion of holes   . . .        Vol. 9, No. 1 

83 

Aerodynamics, Vol. 67 and 68, pp. 65-78, 

(1997). 

[22] K. B. Shah, Large-eddy simulation of the

flow past a cubic obstacle, PhD. Thesis,

Stanford University, (1998).

[23] W. Rodi, J. H. Ferziger, M. Breuer, and M.

Pourquié. "Workshop on LES of flows past

bluff bodies". Rotach-Egern, Germany, 

(1995). 

[24] A. Yakhot, H. Liu, N. Nikitin, "Turbulent

flow around a wall-mounted cube: A direct

numerical simulation". International

Journal. of. Heat and Fluid. Flow, Vol. 27,

No. 6, pp. 994-1009, (2006).

How to cite this paper: 

B. Rostane, K. Aliane and S. Abboudi ,“ Influence of insertion of holes in

the middle of obstacles on the flow around a surface-mounted cube”
Journal of Computational and Applied Research in Mechanical

Engineering, Vol. 9, No. 1, pp. 73-83, (2019).

DOI:  10.22061/jcarme.2019.3984.1472 

URL: http://jcarme.sru.ac.ir/?_action=showPDF&article=1032 

http://jcarme.sru.ac.ir/?_action=showPDF&article=1032



