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 Abstract  

Hyperthermia is one of the first applications of nanotechnology in medicine by 

using micro/nano magnetic particles that act based on the heat of ferric oxide 

nanoparticles or quantum dots in an external alternating magnetic field. In this 

study, a two-dimensional model of body and tumor tissues embedded is 

considered. Initially, the temperature distribution is obtained with respect to 

tumor properties and without the presence of an electromagnetic field. Then, the 

effect of the electromagnetic field on the temperature distribution is studied. The 

results are compared with those of other papers. The results indicate that the use 

of the electromagnetic field causes a significant rise in the tumor temperature; 

however, the risk of damage to the healthy tissues surrounding the cancerous 

tissue seems to be high. Then, the micro/nanoparticles are injected into the 

tumor tissue to focus energy on cancerous tissue and maximally transfer the heat 

onto the tissue. The temperature distribution in the state is compared with the 

case with no nanoparticles and other numerical works. The results demonstrate 

that with the injection of nanoparticles into the tumor, the maximum 

temperature location is transferred to the center of the tumor and also increases 

to 6°C. After determining the temperature distribution in the presence of 

nanoparticles, the effects of different variables of the problem are studied. 

According to the obtained results, the increase in the concentration and radius 

of nanoparticles have a positive effect on the temperature distribution in the 

tissue; on the other hand, the increase in the frequency and size of the electrodes 

have a negative effect. The relevant equations are solved numerically using the 

finite difference method. 
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Nomenclature 
𝐶 Heat capacity (𝐽/𝑚3𝐾) 
𝑬 Electric field strength (V/m) 
𝑓 Frequency of electromagnetic field (Hz) 
𝑁 Demagnetization factor of composite tissue 
𝑛 Concentrations of micro/nanoparticles 

𝑃𝑆𝑃𝑀 Heat generation rate by super-paramagnetism 

(𝑊/𝑚3) 
𝑄 Heat generation rate (𝑊/𝑚3) 

  
𝑯 Intensity of the magnetic field (A/m) 
ℎ𝑓 Apparent heat convection coefficient between 

the skin surface and the water (𝑊/𝑚2𝐾) 
𝐾 thermal conductivity (𝑊/𝑚𝐾) 
𝑞 Direction perpendicular to the studied boundary 

(m) 
𝑅 Radius of the magnetic induction loop (m) 
𝑟 Radius of micro / nanoparticles (m) 
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𝑇 Temperature (℃) 

 

Greek symbols 

𝜀 Permittivity of dielectric constant (𝐶2/(𝑁𝑚2)) 

𝜂 Volume ratio of nanoparticles (1/𝑚3) 

𝜇0 Permeability of free space (𝑇. 𝑚. 𝐴−1) 

𝜎 Conductivity (𝑆/𝑚) 

𝜑 Electric potential (V) 

 

Superscript 

𝑛 Iteration 

𝜒 Susceptibility of magnetic nanoparticles 

𝜔𝑏 Blood perfusion (1/𝑠) 

𝜔 Relaxation factor 

Ω Solution domain 

Ωℎ Heating area 

 

Subscripts 
1 Normal tissues 

2 Tumor tissues 

 

1. Introduction  

 

One of the most promising approaches in cancer 

therapy is hyperthermia. It is a treatment method 

in which the temperature of the body or local 

tissues increases to about 41-43°C. Various 

methods are employed in hyperthermia, such as 

the use of hot water, capacitive heating, and 

inductive heating of malignant cells. The 

possibility of treating cancer by artificially 

induced hyperthermia has led to the 

development of many different devices designed 

to heat malignant cells while sparing 

surrounding healthy tissue [1-4]. In 

hyperthermia, introduced to the clinical 

oncology a few decades ago, the cells are made 

sensitive for combined treatment through the use 

of electromagnetic energy (EM), ultrasound, etc. 

for a certain period of time. Hyperthermia, 

almost always used with other forms of cancer 

treatment methods, provides the synergy with 

different measures of the conventional 

treatments. In combination with radiotherapy 

and/or chemotherapy, hyperthermia would have 

higher response rates, along with improved 

control rate of the local tumor, better relieving 

effects or much better overall survival rate in 

selected cases of a variety of tumors [5]. In 

recent decades, extensive studies have been 

performed in the field of hyperthermia, ranging 

from the mechanisms of thermal cell kill to 

clinical trials and treatments. A series of books 

have been published summarizing the many 

experimental and clinical studies in the field of 

hyperthermia [6-21].  

Over the last decade, the branch of hyperthermia 

with magnetic particles has been revived with 

the advent of magnetic fluid hyperthermia 

(MFH), where the magnetic structures used are 

super-paramagnetic (SPM) nanoparticles that 

have been suspended in water or a liquid 

hydrocarbon to form magnetic fluid or Ferro-

fluid. It has been proved that ferrofluids and 

SPMs are more likely to provide useful heating 

than ferromagnetic (FM) particles using the low 

magnetic field strength. In addition, with the 

development of nanotechnology, embedding 

several metal spheres in the tissue of a tumor is 

not so difficult. The SPMs effectively raise the 

temperature of the area containing the tumor. 

The resulting temperature pattern is a much more 

uniform pattern than the pattern resulted from 

the heat flow using only the electromagnetic 

field [22]. Recently, various researchers 

published papers about nanofluid heat transfer 

[23-25]. 

Dughiero and Corazza simulated the induction 

heating of the tumor by the finite element 

method (FEM) and using the "Fluent" software 

[26]. LVet al employed micro/nanomaterials in 

the alive tissue using the Monte Carlo method 

and taking into account the pseudo-stable 

electromagnetic field and the unstable tissue 

temperature in three-dimensional tissue [22]. 

Sazegarnia et al. investigated hyperthermia in 

combination with chemotherapy mediated by 

gold nanoparticles and concluded that the 

presence of nanoparticles would increase the 

therapeutic efficacy [27]. Zhao et al. employed 

magnetic nanoparticles in hyperthermia from 

laboratory mice. The results indicated that the 

temperature of the tumor center increases 

significantly [28]. By the FEM, Paruch 

investigated the destruction of the tumor by 

hyperthermia by nanoparticles in the three-

dimensional domain [29]. Majchrzak and Paruch 

examined the induction hyperthermia by 

considering the two-dimensional model with the 

BEM method [30]. Using experimental results, 

Nemati et al. indicated that by changing the 

shape of superparamagnetic particles from the 

spherical shape to deformed cubes (octopods), 
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their specific absorption rate (SAR) increases to 

about 70% [31]. An electroquasistatic (EQS) 

model of capacitive hyperthermia for treating 

lung tumors was proposed in [32]. Specific loss 

power has been measured on γ-Fe2O3 

nanoparticles dispersed in water by means of 

several techniques in [33]. Joglekar et al. 

evaluated local heating using magnetic 

nanoparticle in prostatic cancer (PC3) tumors 

hyperthermia in vivo experiments [34]. Talati 

and Taheri investigated the uncertainties in 

induction heating by micro/ nanomagnetic 

articles in hyperthermia [35]. 

In this study, firstly the temperature distribution 

of tissue in the presence of a tumor and absence 

of nanoparticles is achieved. Then it is focused 

on the generation of heat by SPM. Initially, the 

electromagnetic field is solved with 

inhomogeneous boundary conditions. Then the 

two-dimensional bio-heat equation is solved. 

The temperature distribution of tissue in the 

presence and absence of nanoparticles is 

analyzed and compared with each other. The 

effects of changes in all variables in magnetic 

hyperthermia are studied in this paper. 

In selecting the magnetic particles, iron oxides of 

magnetite Fe2O3 and maghemite γ-Fe2O3 have 

been much studied due to having magnetic 

properties and biological compatibility. The 

magnetic oxides heating by using an alternating 

magnetic field mainly depend on both waste 

reorientation of magnetization or frictional 

dissipation process (if the particle is able to 

rotate in a small enough viscous environment). 

The particles used in magnetic hyperthermia 

must be small enough, and the frequency of 

alternating field to produce every significant 

eddy or Foucault current needs to be very low as 

well [22]. 

To obtain the potential distribution inside the 

tissue and temperature distribution, the Laplace 

and famous Pennes equations are used, 

respectively. Pennes equation provides 

acceptable results for such analyses. The finite 

difference method is used to solve these 

equations. Due to the simplicity of the finite 

difference method in simple geometry analysis, 

it has many various applications in solving 

problems [36-41]. 
 

2. Theoretical models and the solutions  
 

Similar to the previous work of the authors, a 

rectangular area with dimensions of 0.08 × 0.04 

m is considered. The heating area by electrodes 

(Ωh) is limited to {0.032 m ≤ x ≤ 0.048 m, y = 0} 

and {0.032 m ≤ x ≤ 0.048 m, y = 0.04 m} and the 

area Ω = {0.032 m ≤ x ≤ 0.048 m, 0.016 m  ≤ y  

≤ 0.032 m} as shown in Fig. 1, represents the 

tumor area [35]. To prevent damage caused by 

overheating to the surface of the skin, these 

surfaces are cooled by two cooling pads put on 

the surface of the skin. 

 

 
Fig. 1. The area of tissue and tumor in the two-

dimensional model. 

 

2.1. Electromagnetic field model 
 

To generate heat in biological tissues by 

applying an external electromagnetic field, 

primarily, the two-dimensional quasi-stationary 

electromagnetic field induced by two plate 

electrodes should be numerically evaluated. The 

potential inside the tissue (φ) is obtained by 

solving the Laplace equation [22]: 
 

(1) ∇. [𝜀(𝑥, 𝑦). ∇𝜑(𝑥, 𝑦)] = 0 . 

where ε (x, y) is the permittivity dielectric 

constant of the tissue. The boundary conditions 

of the Eq. (1) for tissue boundaries can be stated 

as follows [22]: 
 

 

(2) 

𝜑(𝑥, 𝑦) = ±𝑈            ( 𝑥, 𝑦) ∈ Ωℎ , 
𝜕𝜑(𝑥, 𝑦)

𝜕𝑞
= 0             ( 𝑥, 𝑦) ∉ Ωℎ . 

 

where Ωh and U are the electrode scope (heating 

area) and the electric potential difference applied 

on electrodes respectively, and q is direction 
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perpendicular to the studied boundary. The 

following conditions should be met at the contact 

surface of normal and tumor tissues [22]: 
 

 

 

(3) 

𝜑1(𝑥, 𝑦) = 𝜑2(𝑥, 𝑦) , 

𝜀1

𝜕𝜑1(𝑥, 𝑦)

𝜕𝑞
= 𝜀2

𝜕𝜑2(𝑥, 𝑦)

𝜕𝑞
 . 

 

where 𝜀1 is the permittivity of the dielectric 

constant of healthy tissue, 𝜀2 is the permittivity 

of the dielectric constant of the tumor, φ1 and  φ2 

are the electric potential of healthy tissue and 

tumor, respectively. The electric field strength is 

obtained from the following equation: 
 

     (4) 𝑬(𝑥, 𝑦) = −∇𝜑(𝑥, 𝑦).      

 

The intensity of the magnetic field can be 

expressed as follows [22]: 

 

 

     (5) 
|𝑯(𝑥, 𝑦)| =

1

1 + 𝑁(𝜒)

|𝑬(𝑥, 𝑦)|

𝜇0𝜋𝑓𝑅
 .  

 

where 𝜇0 is the dielectric constant of free space 

permeability (𝜇0 = 4𝜋 × 10−7 𝑇. 𝑚. 𝐴−1), 𝑓 is 

the frequency of the electromagnetic field, 𝑅 is 

the radius of the magnetic induction loop, 

𝑁(𝜒) = 1/3 (for spherical composite) is the 

demagnetization factor of composite tissue, and 

𝜒 is the susceptibility of magnetic nanoparticle. 

For the small field and assuming minimal 

interaction between the particles forming the 

SPMs, the ferrofluid magnetization response (a 

combination of ferromagnetic materials and 

liquid that are highly magnetic in the presence of 

a magnetic field) under an alternating field can 

be expressed as a statement of its hybrid 

components:  𝜒 = 𝜒′ + 𝑖𝜒′′; both 𝜒′ and 𝜒′′ 

components are dependent on the frequency. The 

heat generated by the super magnet is obtained 

by the following equation [22]: 
 

(6) 𝑃𝑆𝑃𝑀 = 𝜇0𝜋𝑓𝜒′′|𝑯|2. 

 

The heat generated (𝑄𝑟1) due to the power 

dissipation of the electromagnetic field is 

dependent on the conductivity of healthy tissue 

(𝜎1) and the strength of the electric field (𝑬). 

Therefore, the volumetric heat can be almost 

obtained as below by using the Eq. (4) for the 

electric field of (𝑬) [22]: 

 

(7) 𝑄𝑟1 = 𝜎1

|𝑬(𝑥, 𝑦)|2

2
=

𝜎1 [|𝐸𝑥|2 + |𝐸𝑦|
2

]

2
 . 

 

The heat generated in the tumor tissue due to the 

induction of SPM by EM field can be calculated 

by the following equation [22]: 
 

 

 

(8) 

𝑄𝑟2 =  
1

∆𝑉
[
4

3
𝑛∆𝑉 𝑃𝑆𝑃𝑀𝜋𝑟3 + (∆𝑉 −

4

3
𝑛∆𝑉𝜋𝑟3)

𝜎̃

2
|𝑬(𝑥, 𝑦)|2] 

= [
3𝑛𝑟3𝜒′′

4𝜇0𝑓𝑅2
+ (1 − 𝜂)

𝜎̃

2
] . [|𝐸𝑥|2 + |𝐸𝑦|

2
] . 

 

where 𝜎̃ is the effective electrical conductivity in 

tumor tissue, 𝜂 = 4𝜋𝑛𝑟3 3⁄  is the SPM volume 

ratio in the tissue, 𝑟 is the radius of SPM micro/ 

nanoparticles, 𝑛  the concentrations of SPM 

micro/ nanoparticles, and ∆𝑉 is the control 

volume of the tumor tissue. 
 

2.2 Thermal model 
 

The famous Pennes equation is used for the heat 

model of biological tissues. As already 

mentioned, despite the simplicity, this equation 

provides acceptable results for such analyses. 

Assuming that the coefficient of thermal 

conductivity is variable, the Pennes equation 

would be rewritten as follows [42]: 
 

 

(9) 
𝐶

𝜕𝑇(𝑥, 𝑦, 𝑡)

𝜕𝑡
= ∇. (𝐾(𝑥, 𝑦)∇𝑇(𝑥, 𝑦, 𝑡)) − 

        𝜔𝑏(𝑥, 𝑦)𝐶𝑏𝑇(𝑥, 𝑦, 𝑡) + 𝑄(𝑥, 𝑦, 𝑡),        (𝑥, 𝑦) ∈ Ω . 
 

 

where Ω is the solution domain, 𝑄(𝑥, 𝑦, 𝑡) =

𝜔𝑏(𝑥, 𝑦)𝐶𝑏𝑇𝑎 + 𝑄𝑚(𝑥, 𝑦, 𝑡) + 𝑄𝑟(𝑥, 𝑦, 𝑡), 𝐶 is the 

heat capacity of tissue, 𝐶𝑏 is the heat capacity of 

blood, 𝑇𝑎 is the temperature of the supplier artery 

that assumed to be constant, 𝑇 is the tissue 

temperature, 𝐾 is the thermal conductivity 

(space dependent), 𝜔𝑏 is the blood perfusion of 

the location function, 𝑄𝑚 is the heat generation 

(space dependent) resulting from body 

metabolism, and 𝑄𝑟 is the heat source of heat 

generation dependent on location.  

The above equation is used for tissues without 

SPM. The equation needs to be revised for 

tissues with injected SPM according to the 
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effective capacity method. The Eq. (9) can be 

written as follows [42]: 
 

 

(10) 
𝐶̃

𝜕𝑇(𝑥, 𝑦, 𝑡)

𝜕𝑡
= ∇. (𝐾(𝑥, 𝑦)∇𝑇(𝑥, 𝑦, 𝑡)) 

−𝜔𝑏(𝑥, 𝑦)𝐶𝑏𝑇(𝑥, 𝑦, 𝑡) + 𝑄(𝑥, 𝑦, 𝑡),            (𝑥, 𝑦) ∈ Ω . 

 

where 𝐶̃ is the effective heat capacity and 𝐾̃ is 

the effective thermal conductivity. The target 

area is assumed to be homogeneous in the tumor 

area. The thermophysical properties of 

cancerous tissue filled with SPM can be obtained 

approximately through the sequential 

arrangement of the relevant volume ratio of each 

substance [42]: 
 

   (11) 𝐶̃ =   (1 − 𝜂)𝐶2 + 𝜂𝐶3( 𝑥, 𝑦) ∈ Ω2 , 

   (12) 𝐾 =   ((1 − 𝜂)/𝐾2 + 𝜂/𝐾3)−1(𝑥, 𝑦) ∈ Ω2 , 

   (13) 𝜎̃ =   ((1 − 𝜂)/𝜎2 + 𝜂/𝜎3)−1(𝑥, 𝑦)  ∈ Ω2. 

 

where 𝐶2  is the heat capacity of the tumor tissue, 

𝐶3  is the heat capacity of SPM nanoparticles, 𝐾2  
is the thermal conductivity of the tumor tissue, 

𝐾3  is the thermal conductivity of SPM 

nanoparticles, 𝜎2  is the electrical conductivity of 

the tumor tissue, and 𝜎3 is the electrical 

conductivity of SPM nanoparticles. 

Assuming stable conditions and that the values 

of 𝐾̃،𝜔𝑏 𝑎𝑛𝑑 𝑄𝑚 in each tumor and normal areas 

are constant, the Eq. (10) is turned as follows for 

each of these areas [42]: 
 

     (14) 

𝐾∇2𝑇(𝑥, 𝑦) − 𝜔𝑏𝐶𝑏𝑇(𝑥, 𝑦)
+ 𝜔𝑏𝐶𝑏𝑇𝑎 

+𝑄𝑚 + 𝑄𝑟(𝑥, 𝑦) =  0             ( 𝑥, 𝑦)
∈ Ω . 

 

where the values of 𝐾̃, 𝜔𝑏 and 𝑄𝑚 are 

determined depending on the studied region. The 

boundary conditions of Eq. (14) are defined as 

[42]: 
 

 

 

 

 

(15) 

−𝐾
𝜕𝑇

𝜕𝑦
= ℎ𝑓(𝑇𝑓 − 𝑇),   

    𝑎𝑡  ( 𝑥 = 0 𝑎𝑛𝑑 𝑥 = 0.08 𝑚;  0 ≤ 𝑦 ≤  0.04 𝑚), 

−𝐾
𝜕𝑇

𝜕𝑦
= 0,          

    𝑎𝑡 (0 ≤ 𝑥 ≤ 0.08 𝑚;  𝑦 = 0 𝑎𝑛𝑑 𝑦 =  0.04 𝑚). 
 

where ℎ𝑓 is the apparent heat convection 

coefficient between the skin surface and water, 

and 𝑇𝑓 is the initial temperature of the water. The 

reason for selecting adiabatic conditions for 

boundaries in the y-direction is that in places 

away from the target area, the temperature field 

is not almost affected by the district center or 

external heating or cooling. The following 

conditions should be met at the contact surface 

of normal tissues and the tumor [42]: 
 

 

 

 (16) 

𝑇1(𝑥, 𝑦) = 𝑇2(𝑥, 𝑦) , 

𝐾1

𝜕𝑇1(𝑥, 𝑦)

𝜕𝑞
= 𝐾2

𝜕𝑇2(𝑥, 𝑦)

𝜕𝑞
 . 

 

where 𝐾1  is the thermal conductivity of healthy 

tissue, 𝐾2  is the thermal conductivity of tumor, 

𝑇1  is the healthy tissue temperature, and 𝑇2  is 

the tumor temperature. 
 

3. Discretization of equations 

3.1 Potential equation 
 

In this section, all presented equations in this 

paper are discretized in accordance with the Ref. 

[43]. In the case of equation related to the tissue 

potential, the Eq. (1) is rewritten as follows for 

each of tumor and healthy areas because of 

constant dielectric constant: 
 

 

(17) 
∇2𝜑(𝑥, 𝑦) =

𝜕2𝜑

𝜕𝑥2
+

𝜕2𝜑

𝜕𝑦2
= 0 .  

 

by choosing ∆𝑥 = ∆𝑦 and using the relaxation 

factor, the above equation is discretized as 

follows with the second-order error: 

 
(18.a) 𝜑𝑖,𝑗

𝑛+1̅̅ ̅̅ ̅̅ = (𝜑𝑖+1,𝑗
𝑛 + 𝜑𝑖−1,𝑗

𝑛 + 𝜑𝑖,𝑗+1
𝑛 + 𝜑𝑖,𝑗−1

𝑛 )/4 . 

(18.b) 𝜑𝑖,𝑗
𝑛+1 = 𝜔𝜑𝑖,𝑗

𝑛+1̅̅ ̅̅ ̅̅
+ (1 − 𝜔)𝜑𝑖,𝑗

𝑛 . 

 

in the above equation, n represents the iteration 

and ω is the relaxation factor that its value is 

obtained through trial and error method. The 

value of 𝜑𝑖,𝑗
𝑛+1̅̅ ̅̅ ̅̅

 is obtained from Eq. (18.a) and 

replaced in Eq. (18.b). The use of a relaxation 

factor accelerates the convergence. If ω> 1, the 

above method is called a Successive Over-

Relaxation (SOR) method, if ω< 1, it would be 

called as Successive Under-Relaxation (SUR), 

and if ω = 1, this method is converted to Gauss–

Seidel method. 
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The equations related to contact surface of the 

tumor and healthy tissue (Eq. (3)) turn as follows 

after discretization: 
 

 

where X1, X2, Y1, and Y2 indicate the region of 

the tumor. The boundary conditions of Eq. (1), 

i.e., Eq. (2), are discretized as follows: 
 

 

Eq. (4), which represents the electric field 

strength, is converted as follows after leading 

discretization and error of the first order: 
 
 

𝐸𝑖,𝑗 = − (
𝜑𝑖+1,𝑗 − 𝜑𝑖,𝑗

∆𝑥
,
𝜑𝑖,𝑗+1 − 𝜑𝑖,𝑗

∆𝑦
).  

(21) 
 

Assuming Δx = Δy, the squared size of the 

electric field with second-order error is obtained 

by the following equation: 
 

|𝐸𝑖,𝑗|
2

= [(𝜑𝑖+1,𝑗 − 𝜑𝑖,𝑗)
2

+ (𝜑𝑖,𝑗+1 − 𝜑𝑖,𝑗)
2
] ∆𝑥2.⁄   

(22) 
 

3.2 Bioheat equation 
 

Pennes bioheat equation, Eq. (14), is discretized 

with the second-order error as follows: 

 
 

  (23.a) 

𝑇𝑖,𝑗
𝑛+1̅̅ ̅̅ ̅̅ = (𝑇𝑖+1,𝑗

𝑛 + 𝑇𝑖−1,𝑗
𝑛 + 𝑇𝑖,𝑗+1

𝑛 + 𝑇𝑖,𝑗−1
𝑛  

+
∆𝑥2

𝐾
 (𝜔𝑏𝐶𝑏𝑇𝑎 + 𝑄𝑚 + 𝑄𝑟𝑖,𝑗))/ (4 +

∆𝑥2

𝐾
𝜔𝑏𝐶𝑏). 

  (23.b) 𝑇𝑖,𝑗
𝑛+1 = 𝜔𝑇𝑖,𝑗

𝑛+1̅̅ ̅̅ ̅̅ + (1 − 𝜔)𝑇𝑖,𝑗
𝑛  .   

 

in the above equation, 𝑛 indicates the iteration 

and ω is the relaxation factor, that its value 

comes from the trial and error method. The 

boundary conditions of Eq. (14), i.e., Eq. (15), 

will be as follows after discretization: 

 

 

 

 

 (24) 

𝑇𝑖,1
𝑛  = (ℎ𝑓. ∆𝑥. 𝑇𝑓 𝐾̃⁄ + 𝑇𝑖,2

𝑛 )/(1 + ℎ𝑓. ∆𝑥. 𝑇𝑓 𝐾̃⁄ ), 

𝑇𝑖,𝑁
𝑛  = (ℎ𝑓. ∆𝑥. 𝑇𝑓 𝐾̃⁄ + 𝑇𝑖,𝑁−1

𝑛 )/(1 +

 ℎ𝑓. ∆𝑥. 𝑇𝑓 𝐾̃⁄ ), 

𝑇1,𝑗
𝑛  = 𝑇2,𝑗

𝑛 , 

𝑇𝑀,𝑗
𝑛  = 𝑇𝑀−1,𝑗

𝑛 . 

 

Also, the following conditions should be met at 

the surface contact of healthy tissue and the 

tumor: 
 

 

 
 

  (25) 

𝑇𝑋1,𝑗
𝑛 = (𝐾2𝑇𝑋1+1,𝑗

𝑛 + 𝐾1𝑇𝑋1−1,𝑗
𝑛 ) (𝐾1 + 𝐾2)⁄ , 

𝑇𝑋2,𝑗
𝑛 = (𝐾1𝑇𝑋2+1,𝑗

𝑛 + 𝐾2𝑇𝑋2−1,𝑗
𝑛 ) (𝐾1 + 𝐾2),⁄  

𝑇𝑖,𝑌1
𝑛 = (𝐾2𝑇𝑖,𝑌1+1

𝑛 + 𝐾1𝑇𝑖,𝑌1−1
𝑛 ) (𝐾1 + 𝐾2)⁄ , 

𝑇𝑖,𝑌2
𝑛 = (𝐾1𝑇𝑖,𝑌2+1

𝑛 + 𝐾2𝑇𝑖,𝑌2−1
𝑛 ) (𝐾1 + 𝐾2)⁄ . 

 

 

 
Fig. 2. Changes in the number of iterations per 

changes in the relaxation factor; determining the 

relaxation factor in (a) potential equation and (b) 

bioheat equation. 
 

4.  Numerical solution 
 

The solution domain is a rectangle with the size 

of 0.08 𝑚 ×  0.04 𝑚. Selecting 𝛥𝑥 = 𝛥𝑦 =

 0.0008 𝑚, the number of compute nodes along 

the x and y axes would be respectively equal to 

𝑀 = 0.08 ∆𝑥⁄ + 1 = 101 and 𝑁 = 0.04 ∆𝑥⁄ + 1 =

51. Also to evaluate the grid independency, 

𝛥𝑥 =  𝛥𝑦 =  0.001 𝑚 is considered, which 

corresponds to M = 81 and N = 41. Fig. 2 shows 

the iteration changes versus the relaxation factor 

in the calculations and for 𝛥𝑥 =  𝛥𝑦 =
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(19) 

𝜑𝑋1,𝑗
𝑛 = (𝜀2𝜑𝑋1+1,𝑗

𝑛 + 𝜀1𝜑𝑋1−1,𝑗
𝑛 ) (𝜀1 + 𝜀2)⁄ , 

𝜑𝑋2,𝑗
𝑛 = (𝜀1𝜑𝑋2+1,𝑗

𝑛 + 𝜀2𝜑𝑋2−1,𝑗
𝑛 ) (𝜀1 + 𝜀2),⁄  

𝜑𝑖,𝑌1
𝑛 = (𝜀2𝜑𝑖,𝑌1+1

𝑛 + 𝜀1𝜑𝑖,𝑌1−1
𝑛 ) (𝜀1 + 𝜀2)⁄ , 

𝜑𝑖,𝑌2
𝑛 = (𝜀1𝜑𝑖,𝑌2+1

𝑛 + 𝜀2𝜑𝑖,𝑌2−1
𝑛 ) (𝜀1 + 𝜀2)⁄ . 

 

 
 
 

(20) 

𝑖𝑛    (  𝑥 ∈ Ωℎ , 𝑦 = 0 𝑚), 
𝑖𝑛    (  𝑥 ∉ Ωℎ , 𝑦 = 0 𝑚), 
𝑖𝑛    ( 𝑥 ∈ Ωℎ , 𝑦 = 0.04 𝑚), 
𝑖𝑛    ( 𝑥 ∉ Ωℎ , 𝑦 = 0.04 𝑚), 

𝑖𝑛    (𝑥 = 0 𝑚, 𝑦), 
𝑖𝑛    (𝑥 = 0.08 𝑚, 𝑦). 

𝜑𝑖,1 = −𝑈  

𝜑𝑖,1 = 𝜑𝑖,2  

𝜑𝑖,𝑁 = +𝑈  

𝜑𝑖,𝑁 = 𝜑𝑖,𝑁−1   

𝜑1,𝑗 = 𝜑2,𝑗     
𝜑𝑀,𝑗 = 𝜑𝑀−1,𝑗 
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0.0008 𝑚. According to Fig. 2, the optimal value 

of relaxation factor is determined for the 

equation related to potential of ω= 1.9399 and 

for the equation related to bioheat equation of ω= 

1.4981. 

The mean absolute error of calculation in each 

iteration is calculated in accordance with the 

following equation [43]: 
 

(26) 
𝜀𝑛 =

∑ ∑ |𝜑𝑛+1 − 𝜑𝑛|𝑁
𝑗=1

𝑀
𝑖=1

𝑀 × 𝑁
 . 

 

where n represents the iteration. If the amount of 

error becomes less than the convergence 

criterion assumed here equal to 10−6, the 

calculation is stopped. Fig. 3 shows the changes 

occurring in the error from the start to finish of 

the iterations for 𝛥𝑥 =  𝛥𝑦 =  0.0008 𝑚.  

Due to the importance of temperature 

distribution in this study, the grid independence 

was examined on this variable. Fig. 4 shows this 

independence of the network for three value of 

the grid size and the same inputs (𝑈 = 8 𝑉, 𝑓 =
1 𝑀𝐻𝑧, 𝑟 = 10 𝑛𝑚, 𝑛 = 1𝐸19, 𝜒′′ = 18,ℎ𝑓 =

45  𝑊/(𝑚2𝐾), 𝑇𝑓 = 20 ℃). As can be seen, 

these figures are in agreement with each other 

and independent from the grid. 
 

5. Results and discussion 

5.1 Model without paramagnetic nanoparticle 
 

First, the temperature distribution of the whole 

area is calculated without applying the 

electromagnetic field. 

The following values are assumed for the healthy 

tissue; thermal conductivity: 𝐾1 = 0.5 [𝑊/𝑚𝐾], 

blood perfusion rate: 𝜔𝑏1 = 0.0005 [1/𝑠], 

metabolic thermal source: 𝑄𝑚1 = 4200 [𝑊/𝑚3], 

blood temperature: 𝑇𝑎 = 37 ℃, and blood heat 

capacity: 𝐶𝑏 = 4.2 [𝑀𝐽 𝑚3𝐾⁄ ]. It has been proven 

that the presence of a malignant tumor in the 

tissue can cause very different blood perfusion 

as well as abnormal heat capacity and 

metabolism heat in the tumor area. The 

following values are related to the tumor on the 

skin and filled with vessels; thermal conductivity 

factor: 𝐾2 = 0.6 [𝑊 𝑚𝐾⁄ ], blood perfusion rate: 

𝜔𝑏2 = 0.002 [1 𝑠⁄ ], and metabolic thermal 

source: 𝑄𝑚2 = 42000 [𝑊 𝑚3⁄ ]. Two types of 

boundary conditions on the surface of the skin 

are considered. In the first type, the constant 

temperature of 𝑇𝑐 = 32.5℃ is assumed. In the 

latter case, the third type condition with heat 

convection coefficient of ℎ𝑓 = 45 [𝑊/(𝑚2𝐾)] 

and temperature of  𝑇𝑓 = 20 ℃ are considered. 
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Fig. 3. Mean absolute error in each iteration and its 

convergence; (a) Potential equation error and (b) 

Bioheat equation error. 

 

The adiabatic assumption is considered for other 

boundary conditions. The maximum 

temperature in two modes is respectively as 

38.129℃ and 38.44℃. Figs. 5 and 6 show the 

temperature distribution in the two cases. The 

black square shape represents the tumor area. 

The aim of this study was to determine the values 

of the electromagnetic field, causing the 

temperature to reach over 42℃. The input data 

into the computerized program are shown in 

Table1. As Table 1 implies, the electrical 

properties of tissues in the human body depend 

on the frequency. 

Electric potential distribution by using Eqs. (18)- 

(20) and its gradients with respect to both axes 

using Eq. (21) and for U = 10 [V] are shown in 

Fig. 7. 
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Fig. 4. Independence of the network on the 

temperature distribution in the tissue (Celsius 

degrees); (a) ∆𝑥 = ∆𝑦 = 0.0016𝑚,  (b)  ∆𝑥 =

∆𝑦 = 0.0008 𝑚, and (c) ∆𝑥 = ∆𝑦 = 0.0004 𝑚 

 

The results calculated are in agreement with 

those reported in Ref. [41] except at the points of 

the edges of the electrodes, because these points 

have a high gradient. In terms of calculation, due 

to the limited number of these points, these 

locations are insignificant and do not have an 

impact on the temperature results. Temperature 

distribution for the three modes of U = 10 [V], f 

= 10 [MHz]; U = 15 [V], f = 0.1 [MHz] and U 

= 10 [V], and f = 1.0 [MHz] are obtained by 

using the Eqs. (23-25) and assuming the 

convection boundary condition on the skin 

surface and stable temperature (ℎ𝑓 = 45 [𝑊/

(𝑚2𝐾)], 𝑇𝑓 = 20℃). These results are compared 

in Fig. 8. According to Fig. 8, in the first case, 

not only much of the tumor is not destroyed by 

heat, but also the healthy tissues are exposed to 

damage and high temperature. The second and 

third modes have better conditions than in the 

first case. In the second case, although a major 

part of the tumor is exposed to the high 

temperature, a large portion of the healthy tissue 

is also exposed to the high temperature. 
 

 
Fig. 5. Temperature distribution in a state of 

convection on the skin surface. 
 

 
Fig. 6. Temperature distribution in a state of 

constant temperature on the skin surface. 

 

 

 

 

 

 

Fig. 7. (a) The potential contours; and its 

gradients with respect to the (b) x-axis and (c) x-

axis.   
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Fig. 8. Temperature distribution in the 

computing area for (a) first mode (𝑓 =

10 [𝑀𝐻𝑧], 𝑈 = 10 [𝑉]), (b) second mode (𝑓 =

0.1 [𝑀𝐻𝑧], 𝑈 = 15 [𝑉]), and (c) third mode (𝑓 =

1.0 [𝑀𝐻𝑧], 𝑈 = 10 [𝑉]). 

 

Table 1. Electrical properties used in the calculations 

(ε0 = 8.85 × 10−12[C2/(Nm2) [41]. 
Dielectric 

permittivity 

[𝐶2/(𝑁𝑚2)] 

Electrical conductivity 
[𝑆/𝑚] 

Frequency 

𝑓[𝑀𝐻𝑧] 

𝜀2 𝜀1 𝜎2 𝜎1  

1.2 𝜀1 20000  𝜀0 1.2 𝜎1 0.192 0.1 

1.2 𝜀1 2000  𝜀0 1.2 𝜎1 0.4 1.0 

1.2 𝜀1 100  𝜀0 1.2 𝜎1 0.625 10 

In the third case, despite the high temperature 

concentrated on the tumor area, a small part of it 

is heated up to the required temperature. With 

the conditions governing the issue, damage to 

the healthy tissues seems unavoidable to achieve 

appropriate therapeutic results. The results 

achieved in this section are in agreement with the 

results achieved in Ref. [41] via the BEM 

method. 

 

5.1 Model with paramagnetic nanoparticles 

 

In this model, according to the results of the 

previous section, the magnetic nanoparticles are 

injected into the tumor area. Other features of 

this model are similar to that of the previous 

model. Fig. 9 shows the model. 

This problem was studied by Majchrzak and 

Paruch [30] with BEM and “Inverse problem” 

to find electric potential, concentration, and 

radius of nanoparticles, but in the present study 

the effects of change in all variables containing 

radius, concentration, susceptibility of 

nanoparticles, frequency, electric potential, and 

size of electrodes are investigated. This study is 

performed by FDM. To validate the results, the 

assumptions made for the variables are 

considered as did in Ref. [30]. The result is 

shown in Fig. 10 for n = 4.8E6, R = 4.2E-8 m. 

The results are in agreement with each other. 

The data on the compound substance composed 

of the cancerous tissue and magnetic 

nanoparticles inserted within, assuming a 

homogeneous distribution, are obtained from 

Eqs. (11)- (13). Magnetic and thermal properties 

of magnetic nanoparticles (iron oxide) are as: 

thermal conductivity coefficient, 𝐾3 =
40.0 [𝑊/𝑚𝐾]; heat capacity, 𝐶3 = 20.72 [𝑀𝐽/
𝑚3𝐾]; magnetic induction loop radius, 𝑅 =
0.01 [𝑚]; electrical conductivity, 𝜎3 =
25000 [𝑆/𝑚]; magnetic nanoparticles 

susceptibility, χ′′ = 18. 
 

 
Fig. 9. The studied two-dimensional model and 

nanoparticles injected within. 
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°C 

 
Fig. 10. Temperature distribution in the tissue, 𝑛 =
4.8𝐸6, 𝑅 = 4.2𝐸 − 8 𝑚 

 

According to Eq. (7), the amount of heat 

generated due to the applied electromagnetic 

field in healthy tissue is obtained. Also, 

according to Eq. (8), the amount of heat 

generated by nanoparticles in tumor tissue is 

obtained, which is entered into the Pennes 

equation. Fig. 11 shows the temperature 

distribution in the tissue with and without 

magnetic nanoparticles (ℎ𝑓 = 45 [𝑊/

(𝑚2𝐾)], 𝑇𝑓 = 20 ℃). According to Fig.11, with 

the introduction of nanoparticles in the tumor 

area, not only the temperature increases for 

around 6°C but also the maximum temperature 

center focuses in the center of the tumor. 

Therefore, the use of magnetic nanoparticles 

leads to energy concentration in the tumor area. 

With energy-focused within the tumor area, the 

cancerous tissue is destroyed with minimal 

damage to the healthy tissues. 
 

 

 
Fig. 11. Temperature distribution in the tissue; (a) 

without (𝑈 = 8 𝑉, 𝑓 = 1 𝑀𝐻𝑧) and (b) with  
(𝑈 = 8 𝑉, 𝑓 = 1 𝑀𝐻𝑧, 𝑟 = 10 𝑛𝑚, 𝑛 = 1𝐸19, 𝜒′′ = 18) 
nanoparticles. 

 

To investigate the effect of heating on 

nanoparticle properties such as density, radius, 

frequency and the intensity of the 

electromagnetic field, various modes are 

considered. The impact of changes in the radius 

of the nanoparticles and the effect of changes in 

the concentration of nanoparticles are shown in 

Fig. 12 and Fig. 13, respectively. With reducing 

the radius of nanoparticles into half, the 

temperature greatly reduces so that the 

temperature increase caused by the use of 

micro/nanoparticles is only about one degree 

Celsius. On the other hand, a high increase in the 

radius of nanoparticles is not possible due to the 

influence on the magnetic properties [22]. 

Therefore, an optimal radius should be selected 

for the particles. With the increment in the 

concentration of nanoparticles, the maximum 

temperature within the tumor area rises sharply, 

while the temperature rise in the vicinity of 

healthy tissue is low. It should also noted that it 

is difficult to achieve high concentrations in 

vitro.  
 

 
𝑈 = 8 𝑉, 𝑓 = 1 𝑀𝐻𝑧, 𝑟 = 5 𝑛𝑚, 𝑛 = 1𝐸19, 𝜒′′ = 18 

 

Fig. 12. Impact of change in the radius of the 

nanoparticles. 

 
𝑈 = 8 𝑉, 𝑓 = 1 𝑀𝐻𝑧, 𝑟 = 10 𝑛𝑚, n = 1.5E19, 𝜒′′ = 18 

 
Fig. 13.  Impact of changes in the concentration of 

nanoparticles 
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The impact of changes on magnetic 

susceptibility and the effect of changes on 

frequency of the electric field are shown in Fig. 

14 and Fig. 15, respectively. With halving the 

magnetic susceptibility, the maximum 

temperature is halved. Thus, by changing this 

quantity, the maximum temperature in the 

cancerous tissue and normal tissue can be 

controlled. Increased frequency of the electric 

field leads to an increased temperature; but this 

increase in temperature occurs in a wide area of 

tissues, including the healthy tissue as well. This 

situation is also observed in the case without the 

nanoparticles, which is shown in Fig. 8(b). 

 
𝑈 = 8 𝑉, 𝑓 = 1 𝑀𝐻𝑧, 𝑟 = 10 𝑛𝑚, n=1E19, 𝜒′′ = 9 

 
Fig. 14. Impact of change in susceptibility of 

nanoparticles.  

      

 
𝑈 = 8 𝑉, 𝑓 = 10 𝑀𝐻𝑧, 𝑟 = 10 𝑛𝑚, n=1E19, 𝜒′′ = 18 
 
Fig. 15. Impact of change in frequency of the electric 

field. 

 

Fig. 16 shows the impact of change in the 

potential of the electric field. According to this 

figure, the increased potential difference in the 

electric field has a huge impact on increasing the 

temperature of the tumor tissue. With regard to 

the distribution of temperature, proper 

determination of this quantity is also helpful in 

controlling the temperature of the whole tissue 

area. 

The impact of changes in the size of the 

electrodes is shown in Fig. 17. According to this 

figure, although the increase in the size of 

electrodes causes the temperature rise, this 

temperature increase occurs in a wide area of the 

tissue. Thus, the risk of injury to the healthy 

tissues surrounding the cancerous tissue rises. 

 

 
𝑈 = 10 𝑉, 𝑓 = 1 𝑀𝐻𝑧, 𝑟 = 10 𝑛𝑚, n=1E19, 𝜒′′ = 18  

 

Fig. 16. Impact of change in the potential of the 

electric field. 

 
𝑈 = 8 𝑉, 𝑓 = 1 𝑀𝐻𝑧, 𝑟 = 10 𝑛𝑚, n=1E19, 𝜒′′ = 18 

{0.025 𝑚 ≤ 𝑥 ≤ 0.055 𝑚, 𝑦 = 0.0  𝑚} 
{0.025 𝑚 ≤ 𝑥 ≤ 0.055 𝑚, 𝑦 = 0.04 𝑚} 

Fig. 17. Impact of change in the size of electrodes. 

 

6. Conclusions 
 

The electrical potential has a strong gradient on 

the edges of the electrodes, which makes it 

difficult to accurately calculate the gradients.  

Changes in the characteristics of the electric field 

cause changes in the temperature in the entire 

studied range, while controlling the temperature 

to maximize it in the center of the tumor through 

changes in the characteristics of the electric field 

is quite limited. 
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Thus, injecting micro/nanoparticles to focus the 

energy at the center of the tumor is very more 

promising. 

Inserting the micro/nanoparticles into the tumor 

tissue significantly increases the temperature and 

cause it to transfer its maximum to the center of 

the tumor. The major issue is to create high 

temperature in the tumor tissue while keeping it 

low in normal tissue around it at the same time. 

Thus, the properties of micro/nanoparticles 

should be selected in such a way that the 

resulting temperature distribution covers such a 

feature. Through review the results of this study, 

one can conclude that increasing the radius and 

concentration of nanoparticles has a positive 

effect on the temperature distribution. This 

means that, along with the increase in 

temperature in the tumor area and the 

transmission of the maximum temperature to 

that area, the areas of the healthy tissue will have 

a negligible increase in temperature. This effect 

minimizes damage to healthy tissues. However, 

the optimal radius and accessible concentration 

in vitro should also be considered. Increasing the 

size of the electrodes and frequency of the 

electromagnetic fields have a negative impact, 

and optimum values must be determined for 

these quantities. Increasing the frequency of the 

electric field causes the maximum temperature 

exit from the center of the tumor and damage the 

healthy tissues, and increasing the size of the 

electrodes increases the temperature in a large 

area of tissue and makes it difficult to control 

damage to healthy tissues. 

Also, due to obtained results, changes in 

magnetic susceptibility and the electromagnetic 

field intensity are effective in controlling the 

temperature in the entire region. 
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