[1] S. U. S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles”, Proceedings of the ASME Int. Mech. Eng. Congress and Exposition, Vol. 66, pp. 99–105, (1995).
[2] J. Buongiorno, “Convective transport in nanofluids”, ASME J. Heat. Trans., Vol. 128, No. 3, pp. 240–250, (2005).
[3] W. A. Khan and I. Pop, “Boundary-layer flow of a nanofluid past a stretching sheet”, Int.J. Heat and Mass Transfer, Vol. 53, No. 11–12, pp. 2477–2483, (2010).
[4] O. D. Makinde, W. A. Khan and Z. H. Khan, “Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet”, Int. J. of Heat and Mass Transfer, Vol. 6, No. 2, pp. 526–533, (2013).
[5] M. Sheikholeslami, S. Abelman and D. D. Ganji, “Numerical simulation of MHD nanofluid flow and heat transfer considering viscous dissipation”, Int. J. Heat Mass Transfer, Vol. 79, pp. 212-222, (2014).
[6] G. K. Ramesh, “Numerical study of the influence of heat source on stagnation point flow towards a stretching surface of a Jeffrey nanoliquid”, Journal of Engineering. Vol. 2015, 10 pages, (2015).
[7] G. K. Ramesh, S. A. Shehzad ,T. Hayat and A. Alsaedi, “Activation energy and chemical reaction in Maxwell magneto-nanoliquid with passive control of nanoparticle volume fraction”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 40, pp. 422, (2018).
[8] B. J. Gireesha, K. Ganesh Kumar, G. K. Ramesh, and B. C. Prasannakumara, “Nonlinear convective heat and mass transfer of Oldroyd-B nanofluid over a stretching sheet in the presence of uniform heat source/sink”, Results in Physics, Vol. 9, pp. 1555-1563 (2018).
[9] K. Govardhan, G. Nagaraju, K. Kaladhar and M. Balasiddulu, “MHD and radiation effects on mixed convection unsteady flow of micropolar fluid over a stretching sheet”, Procedia Comp. Sci., Vol. 57, pp. 65–76, (2015).
[10] R. Cortell, “A note on magnetohydrodynamic ﬂow of a power-law ﬂuid over a stretching sheet”, Appl. Math. Comput. Vol. 168, pp. 557–566, (2005).
[11] M. Y. Malik, T. Salahuddin, A. Hussain and S. Bilal, “MHD flow of tangent hyperbolic fluid over a stretching cylinder: Using Keller box method”, J. of Magnetism and Magnetic Materials, Vol. 395, pp. 271–276, (2015).
[12] R. Nasrin, S. Parvin and M. A. Alim, “Prandtl number effect on assisted convective heat transfer through a solar collector”, Applications and Applied Mathematics: An Int. J., Vol. 2, pp. 22-36, (2016).
[13] N. S. Akbar, S. Nadeem, R. Ul Haq and Z. H. Khan, “Numerical solutions of Magneto hydrodynamic boundary layer flow of tangent hyperbolic fluid flow towards a stretching sheet with magnetic field”, Indian J. Phys., Vol. 87, No. 11, pp. 1121–1124, (2013).
[14] R. Nasrin and M. A. Alim, “Prandtl number effect on free convective flow in a solar collector utilizing nanofluid”, Engg. Transac., Vol. 7, No. 2, pp. 62-72, (2012).
[15] S. Nadeem, S. Ijaz and N. S. Akbar, “Nanoparticle analysis for blood flow of Prandtl fluid model with stenosis”, Int. Nano Letters, Vol. 3, No. 35, pp. 2-13, (2013).
[16] S. A. Shehzad, T. Hayat, A. Alsaedi and A. O. Mustafa, “Nonlinear thermal radiation in three-dimensional flow of Jeffrey nanofluid: A model for solar energy”, Appl. Math. And Compu., Vol. 248, pp. 273–286, (2014).
[17] A. Zaib, M. M. Rashidi, A. J. Chamkha and N. F. Mohammad, “Impact of nonlinear thermal radiation on stagnation-point flow of a Carreau nanofluid past a nonlinear stretching sheet with binary chemical reaction and activation energy”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. Vol. 232, No. 6, pp. 962-972, (2017).
[18] T. Hayat, S. Qayyum, A. Alsaedi and S. A. Shehzad, “Nonlinear thermal radiation aspects in stagnation point flow of tangent hyperbolic nanofluid with double diffusive convection”, Journal of Molecular Liquids, Vol. 223, pp. 969-978, (2016).
[19] T. Hayat, T. Muhammad, A. Alsaedi and M.S. Alhuthali, “Magnetohydrodynamic three-dimensional flow of viscoelastic nanofluid in the presence of nonlinear thermal radiation”, J. Magnetism and Magnetic Materials, Vol. 385, pp. 222–229, (2015).
[20] G. K. Ramesh and B. J. Gireesha, “Flow over a stretching sheet in a dusty fluid with radiation effect”, ASME J. Heat transfer, Vol. 135, No. 10, pp. 102702(1-6), (2013).
[21] M. Mustafa, A. Mushtaq, T. Hayat,and A. Alsaedi, “Numerical study of the non-linear radiation heat transfer problem for the flow of a second-grade fluid”, J. Bulgarian Chemi. Commun., Vol. 47, No. 2, pp. 725-732, (2015).
[22] G. K. Ramesh, A. J. Chamkha and B. J. Gireesha, “Boundary layer flow past an inclined stationary/moving flat plate with convective boundary condition”, Afrika Matematika, Vol. 27. No. 1-2, pp. 87-95, (2016).
[23] C. Y. Wang, “Flow due to a stretching boundary with partial slip an exact solution of the Navier-Stokes equations”, Chem. Eng. Sci., Vol. 57, pp. 3745–3747, (2002).
[24] S. Mukhopadhyay and R. S. R. Gorla, “Effects of partial slip on boundary layer flow past a permeable exponential stretching sheet in presence of thermal radiation”. Heat Mass Trans., Vol. 45, pp. 1447–1452, (2009).
[25] T. Fang, S. Yao, J. Zhang and A. Aziz, “Viscous flow over a shrinking sheet with a second order slip flow model”. Commun. Nonlinear Sci. and Numerical Simul., Vol. 15, No. 7, pp. 1831–1842, (2010).
[26] K. Bhattacharyya, S. Mukhopadhyay and G. C Layek, “Slip effects on boundary layer stagnation-point flow and heat transfer towards a shrinking sheet”, Int. J. Heat and Mass Tran., Vol. 54, No. 1–3, pp. 308–313, (2011).
[27] S. Das, R. N. Jana and O. D. Makinde, “MHD boundary layer slip flow and heat transfer of nanofluid past a vertical stretching sheet with non-uniform heat generation/absorption”. Int. J. Nanosci., Vol. 13, No. 3, 1450019 (2014).
[28] M. Kezzar and M. Rafik Sari, “Series solution of nanofluid flow and heat transfer between stretchable/shrinkable inclined walls”, International Journal of Applied and Computational Mathematics, Vol.3, No. 3, pp. 2231–2255, (2017).
[29] M. Kezzar, M. Rafik Sari, R. Bourenane, M. M. Rashidi and A. Haiahem, “Heat transfer in hydro-magnetic nano-fluid flow between non parallel plates using DTM”, (2018). DOI: 10.22055/JACM.2018.24959.1221
[30] C.Y. Wang, “Free convection on a vertical stretching surface”, J. Appl. Math. Mech. (ZAMM), Vol. 69, pp. 418–420, (1989).
[31] R. S. R. Gorla and I. Sidawi, “Free convection on a vertical stretching surface with suction and blowing”, Appl. Sci. Res., Vol. 52, pp. 247–257, (1994). | |