
تعداد نشریات | 11 |
تعداد شمارهها | 214 |
تعداد مقالات | 2,151 |
تعداد مشاهده مقاله | 2,971,329 |
تعداد دریافت فایل اصل مقاله | 2,171,731 |
Some GAP programs for computing the topological indices | ||
Journal of Discrete Mathematics and Its Applications | ||
مقاله 5، دوره 7، شماره 3، شهریور 2022، صفحه 147-154 اصل مقاله (251.07 K) | ||
نوع مقاله: Full Length Article | ||
شناسه دیجیتال (DOI): 10.22061/jdma.2022.877 | ||
نویسنده | ||
Modjtaba Ghorbani | ||
Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University | ||
تاریخ دریافت: 05 شهریور 1401، تاریخ بازنگری: 15 شهریور 1401، تاریخ پذیرش: 25 شهریور 1401 | ||
چکیده | ||
A topological index is a numerical invariant associated with a chemical graph. In this paper we introduce some GAP programs for computing well-known topological indices. | ||
کلیدواژهها | ||
Wiener index؛ Szeged index؛ PI index؛ vertex-PI index | ||
مراجع | ||
[1] A. R. Ashrafi, T. Dosli ˇ c, M. Saheli, The eccentric connectivity index of ´ TUC4C8(R) nanotubes, MATCH Commun. Math. Comput. Chem. 65 (2011) 221–230. [2] A. R. Ashrafi, M. Saheli, M. Ghorbani, The eccentric connectivity index of nanotubes and nanotori, J. Comput. Appl. Math. 235(16) (2011) 4561-4566. [3] A. T. Balaban, Highly discriminating distance based numerical descriptor, Chem. Phys. Lett. 89 (1982) 399–404. [4] A. T. Balaban, Topological indices based on topological distances in molecular graphs, Pure Appl. Chem. 55 (1983) 199–206. [5] M. V. Diudea, G. Katona, I. Lukovitz, N. Trinajstic, Croat. Chem. Acta 71 (1998) 459-471. [6] T. Dosli ˇ c, A. Graovac, O. Ori, Eccentric connectivity indices of hexagonal belts and chains, MATCH Commun. Math. Comput. Chem. 65 (2011) 745-752. [7] T. Dosli ˇ c, M. Saheli, Eccentric connectivity index of composite graphs, 95 (2014) 3-22. ´ [8] P. W. Fowler, D. E. Manolopoulos, An Atlas of Fullerenes, Oxford Univ. Press, Oxford, 1995. [9] M. Ghorbani, T. Ghorbani, Computing the Wiener index of an infinite class of fullerenes, Studia Ubb Chemia 58 (2013) 43–50. [10] M. Ghorbani, Computing Wiener index of C24n fullerenes, J. Comput. Theor. Nanosci. 12 (2015) 1847–1851. [11] M. Ghorbani, M. Songhori, Computing Wiener index of C12n fullerenes, Ars Combin. 130 (2017) 175–180. [12] I. Gutman, A. A. Dobrynin, The Szeged index-a success story, Graph Theory Notes N. Y. 34 (1998) 37–44. [13] I. Gutman, J. H. Potgieter, Wiener index and intermolecular forces, J. Serb. Chem. Soc. 62 (1997) 185–192. [14] I. Gutman, Y. N. Yeh, S. L. Lee, Y. L. Luo, Some recent results in the theory of the Wiener number, Indian J. Chem. 32A (1993) 651–661. [15] S. Gupta, M. Singh, A. K. Madan, Application of graph theory: Relationship of eccentric connectivity index and Wiener’s index with anti-inflammatory activity, J. Math. Anal. Appl. 266 (2002) 259–268. [16] P. V. Khadikar, On a novel structural descriptor, PL. Nat. Acad. Sci. Lett 23 (2000) 113–118. [17] P. V. Khadikar, S. Karmarkar, On the estimation of PI index of polyacenes, Acta Chim. Slov. 49 (2002) 755–771. [18] P. V. Khadikar, S. Karmarkar, V. K. Agrawal, Relationships and relative correlation potential of the Wiener, Szeged and PI indices, Nat. Acad. Sci. Lett. 23 (2000) 165–170. [19] H. W. Kroto, J. E. Fichier, D. E. Cox, The Fullerene, Pergamon Press, New York, 1993. [20] V. Kumar, A. K. Madan, Application of graph theory: Prediction of cytosolic phospholipase A2 inhibitory activity of propan-2-ones, J. Math. Chem. 39 (2006) 511–521. [21] V. Lather, A. K. Madan, Application of graph theory: Topological models for prediction of CDK-1 inhibitory activity of aloisines, Croat. Chem. Acta 78 (2005) 55–61. [22] S. Sardana, A. K. Madan, Application of graph theory: Relationship of molecular connectivity index, Wiener’s index and eccentric connectivity index with diuretic activity, MATCH Commun. Math. Comput. Chem. 43 (2001) 85–98. [23] M. Schonert, et al., GAP, Groups, Algorithms and Programming, Lehrstuhl De fur Mathematik, RWTH, Aachen, 1995. [24] V. Sharma, R. Goswami, A. K. Madan, Eccentric connectivity index: A novel highly discriminating topological descriptor for structure-property and structure-activity studies, J. Chem. Inf. Comput. Sci. 37 (1997) 273–282. [25] S. Nikolic, N. Trinajsti ´ c, Z. Mihali ´ c, The Wiener index: developments and applications, Croat. Chem. Acta 68 (1995) 105–129. [26] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17–20. | ||
آمار تعداد مشاهده مقاله: 769 تعداد دریافت فایل اصل مقاله: 485 |