On certain degree-based topological indices of armchair polyhex nanotubes

Rachanna Kanabur

Department of Mathematics, BLDEA’S Commerce BHS Arts and TGP Science, College, Jamakhandi-587301, Karnataka, India

Academic Editor: Modjtaba Ghorbani

Abstract. Recently [18], Shigehalli and Kanabur have introduced two new topological indices namely, \(AG_2 \) index and \(SK_3 \) index. Hosamani [14], has studied a novel topological index, namely the Sanskruti index \(S(G) \) of a molecular graph \(G \). In this paper, formula for computing the armchair polyhex nanotube \(TUA_{C_6} \) \([m, n] \) family is given.

Keywords. molecular graph, arithmetic-geometric index (\(AG_2 \) index), \(SK_3 \) index, sanskruti index, armchair polyhex nanotube.

1 Introduction

Let \(G \) be a simple connected graph in chemical graph theory. In mathematics chemistry, a molecular graph is a simple graph such that its vertices correspond to the atoms and the edges to the bonds. And also a connected graph is a graph such that there is a path between all pairs of vertices. Note that hydrogen atoms are often omitted [3, 12].

Mathematical chemistry is a branch of theoretical chemistry for discussion and prediction of the molecular structure using mathematical methods without necessarily referring to quantum mechanics. Chemical graph theory is a branch of mathematical chemistry which applies graph theory to mathematical modelling of chemical phenomena [6, 8, 12]. This theory had an important effect on the development of the chemical sciences.
All molecular graphs considered in this paper are finite, connected, loopless, and without multiple edges. Let $G = (V, E)$ be a graph with n vertices and m edges. The degree of a vertex $u \in V(G)$ is denoted by $d_u(G)$ and is the number of vertices that are adjacent to u. The edge connecting the vertices u and v is denoted by uv [3]. Motivated by previous research on armchair polyhex nanotubes, here we computed the topological index value of armchair polyhex nanotubes [2,4,7,9,10,11,13,16,17,18].

2 Computing the topological indices of certain nanotubes

The armchair polyhex nanotubes $G = TUAC_6$ (Fig. 1) suppose m and n denote the number of hexagons in the first row/column of the 2D-lattice of $TUAC_6[m,n]$ (Fig. 2), respectively. Thus the number of vertices/atoms in this nanotube is equal to $|V(TUAC_6[m,n])| = 2m(n+1)$, $m,n \in E(G)$ and obviously the number of edges/bonds is $|E(TUAC_6[m,n])| = 3mn + 2m$.

![Figure 1. The 3D lattice of Armchair polyhex nanotubes $TUAC_6[m,n]$.](image)

There are two partitions $V_2 = \{ v \in V(G) / d_v = 2 \}$ and $V_3 = \{ v \in V(G) / d_v = 3 \}$ of $V(TUAC_6 [m,n])$, since the degree of an arbitrary vertex/atom of a molecular graph armchair polyhex is equal to 2 or 3. Next, these partitions imply that $E(TUAC_6[m,n])$ can be divided in three partitions

$E_5 = \{ u,v \in V(TUAC_6[m,n]) | d_u = d_v = 3 \}$,

$E_5 = \{ u,v \in V(TUAC_6[m,n]) | d_u = 3, and d_v = 2 \}$, and

$E_4 = \{ u,v \in V(TUAC_6[m,n]) | d_u = d_v = 2 \}$.

From Fig. 2, it is easy to see that the size of edge/bond partitions E_4, E_5 and E_6 are equal to are equal to m, $2m$ and $3mn - m$, respectively. From Fig. 3, one can see that for every atom/vertex $v \in V_2$, $S_v = 2 + 3 = 5$, since for its adjacent vertices u, w; $d_u = 2$ and $d_w = 3$ ($u \in V_2$, $w \in V_3$) and obviously $S_u = 5$. Whereas $S_w = 2 \times 3 + 2$, since for $N(w) = \{ u_1, u_2, v \}$, the degree of vertices/atoms u_1, u_2 equal to three. Also, for all other vertices a (which belong to V_3), $S_a = 3 \times 3 = 9$.
Figure 2. The 2D lattice of Armchair polyhex nanotubes $TUAC_6[m,n]$.

Figure 3. The particular of 2D lattice of Armchair polyhex $TUAC_6[m,n]$.

2.1 Arithmetic-Geometric (AG_2) Index

Let $G = (V,E)$ be a molecular graph, and $S_G(u)$ is the degree of the vertex u, then AG_2 index of G is defined as

$$AG_2(G) = \sum_{u,v \in E(G)} \frac{S_G(u) + S_G(v)}{2\sqrt{S_G(u)S_G(v)}},$$

where $S_G(u)$ (or $S_G(v)$) is the summation of degrees of all neighbours of vertex u (or v) in G.

$$S_G(u) = \sum_{u,v \in E(G)} d_G(u),$$

and

$$N_G(u) = \{v \in V(G) | uv \in E(G)\}.$$

2.2 SK$_3$ Index

The SK$_3$ index of a graph $G = (V,E)$ is defined as

$$SK_3(G) = \sum_{u,v \in E(G)} \frac{S_G(u) + S_G(v)}{2},$$

where $S_G(u)$ (or $S_G(v)$) is the summation of degrees of all neighbours of vertex u (or v) in G.

$$S_G(u) = \sum_{u,v \in E(G)} d_G(u),$$
and
\[N_G(u) = \{ v \in V(G) | uv \in E(G) \} . \]

2.3 Sanskruti Index

Recently, Hosamani [18], studied a novel topological index, namely the Sanskruti index \(S(G) \) of a molecular graph \(G \).

\[
S(G) = \sum_{uv \in E(G)} \left(\frac{S_G(u)S_G(v)}{S_G(u) + S_G(v) - 2} \right)^3,
\]

where \(S_G(u) \) (or \(S_G(v) \)) is the summation of degrees of all neighbours of vertex \(u \) (or \(v \)) in \(G \).

\[
S_G(u) = \sum_{u,v \in E(G)} d_G(u),
\]

and
\[N_G(u) = \{ v \in V(G) | uv \in E(G) \} . \]

3 Main Results

Table 1. Edge partition of graph of \(TUAC_6[m,n] \) armchair polyhex nanotube based on degree sum of vertices lying at unit distance from end vertices of each edge.

<table>
<thead>
<tr>
<th>((S_u, S_v), \text{ where } u,v \in E(H))</th>
<th>(5,5)</th>
<th>(5,8)</th>
<th>(8,8)</th>
<th>(8,9)</th>
<th>(9,9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of edges</td>
<td>(m)</td>
<td>(2m)</td>
<td>(m)</td>
<td>(2m)</td>
<td>(9mn - 4m)</td>
</tr>
</tbody>
</table>

Theorem 3.1. Let \(G \) be the armchair nanotube \(TUAC_6[m,n] \) \(\forall m,n \in E(G) \). Then the \(AG_2 \) index of \(G \) is equal to

\[
AG_2(G) = (9n - 2.0588) m.
\]

Proof.

\[
AG_2(G) = \sum_{u,v \in E(G)} \frac{S_G(u) + S_G(v)}{2\sqrt{S_G(u)S_G(v)}}.
\]
This implies that

\[
AG_2(TUAC_6[m,n]) = (5,5)\left(\frac{5+5}{2\sqrt{25}}\right) + (5,8)\left(\frac{5+8}{2\sqrt{40}}\right) + (8,8)\left(\frac{8+8}{2\sqrt{64}}\right) \\
+ (8,9)\left(\frac{8+9}{2\sqrt{72}}\right) + (9,9)\left(\frac{9+9}{2\sqrt{81}}\right) \\
= m(1) + (2m)\left(\frac{13\sqrt{40}}{2\sqrt{40}}\right) + (m)(1) + (2m)\left(\frac{17\sqrt{72}}{2\sqrt{72}}\right) + (9mn-4m)(1) \\
= 9mn - 2m + \frac{13m}{\sqrt{40}} + \frac{17m}{\sqrt{72}} \\
= \left(9n - 2 + \frac{13}{\sqrt{40}} + \frac{17}{\sqrt{72}}\right)m \\
= (9n - 2.0588)m.
\]

Theorem 3.2. Let \(G \) be the armchair nanotube \(TUAC_6[m,n] \). Then the SK3 index of \(G \) is equal to

\[SK_3(G) = (81n + 7)m. \]

Proof.

\[
SK_3(G) = \sum_{u,v \in E(G)} \frac{SG(u) + SG(v)}{2}.
\]

This implies that

\[
SK_3(TUAC_6[m,n]) = (5,5)\left(\frac{5+5}{2}\right) + (5,8)\left(\frac{5+8}{2}\right) + (8,8)\left(\frac{8+8}{2}\right) \\
+ (8,9)\left(\frac{8+9}{2}\right) + (9,9)\left(\frac{9+9}{2}\right) \\
= m(5) + (2m)\left(\frac{13}{2}\right) + (m)(8) + (2m)\left(\frac{17}{2}\right) + (9mn-4m)(9) \\
= 5m + 13m + 8m + 17m + 81mn - 36m \\
= 81mn + 7m \\
= (81n + 7)m.
\]

Theorem 3.3. Let \(G \) be the armchair nanotube \(TUAC_6[m,n] \). Then the Sanskruti index of \(G \) is equal to

\[S(G) = (1167.75n - 75.58)m. \]

Proof.

\[
S(G) = \sum_{uv \in E(G)} \left(\frac{SG(u)SG(v)}{SG(u) + SG(v) - 2}\right)^3.
\]

23
This implies that
\[
S(TUAC_6[m,n]) = (5.5) \left(\frac{25}{5+5-2} \right)^3 + (5.8) \left(\frac{40}{5+8-2} \right)^3 + (8.8) \left(\frac{64}{8+8-2} \right)^3
\]
\[
+ (8.9) \left(\frac{72}{8+9-2} \right)^3 + (9.9) \left(\frac{81}{9+9-2} \right)^3
\]
\[
= m \left(\frac{25}{8} \right)^3 + 2m \left(\frac{40}{11} \right)^3 + m \left(\frac{64}{14} \right)^3 + 2m \left(\frac{72}{15} \right)^3
\]
\[
+ (9mn - 4m) \left(\frac{81}{16} \right)^3
\]
\[
= m (3.125)^3 + 2m (3.6363)^3 + m (4.5714)^3 + 2m (4.8)^3
\]
\[
+ (9mn - 4m) (5.0625)^3
\]
\[
= (1167.75n - 75.58) m.
\]

Conclusion

In this paper, we have computed the value of AG_2 index, SK_3 index and Sanskruti index for $TUAC_6[m,n]$ armchair polyhex nanotube without using computer.

References

