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1. Introduction

Composites have been broadly utilized in 

different types of applications. They can be 

exposed to numerous deformities such breaks, 

holes, or some other type of discontinuities. 

Disregarding the impact of such imperfections 

may prompt significant issues in structural 

entirety of the entire body. Due to heterogeneous 

and nonisotrop properties of composite 

materials, it is very hard to investigate their 

mechanical behavior. To understand this 

behavior, the material has to be modeled 

properly. Many studies have been done in the 

field of micro and Nano mechanical modeling of 

composites [1-4]. One of the models available is 

the so-called shear lag model, wherein, all fibers 

are assumed to take axial load, while matrix 

sustains only shear. The manner of transferring 

of load from any broken fibers to its adjoining 

fibers is through shear stress created within the 

matrix. It is demonstrated that [5-8] Shear-Lag 

model gives generally exact outcomes on normal 

stresses created in composites with the matrix by 

low tensile modulus. Some authors have applied 

numerical methods to compare the results of 

shear-lag model with those of finite element 

analysis [9, 10]. By definition a hybrid 

composites is one which is composed of more 

than one type of filament. The stress distribution 
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inside the material can be complicate with the 

existence of the second type fiber. A few 

researchers have likewise attempted to study the 

stress distribution and fracture for hybrid 

composites materials [11-13]. Transient 

response of stress distributions due to initiation 

of a crack in a lamina was first studied by 

Hedgepeth [5]. He used the conventional shear 

lag model to obtain equilibrium equations in a 

lamina with infinite dimensions and used laplace 

transforms to solve the equilibrium equations. 

Due to the complexity of the problem, he just 

used three broken fibers. Some other authors 

have used numerical approaches, namely finite 

difference method, to study the dynamic 

behavior of composites in practice [14, 15]. Reza 

et al. [16] investigated the dynamic stress 

concentration of a lamina using finite difference 

method and studied the effect of viscoelasticity 

of a polymer matrix on it. Souad et al. [17] 

investigated the stress concentration factor in a 

fibre reinforced composite material with ceramic 

matrix. Using finite element method, they 

calculated the stress concentration factor for 

crack growth in the ceramic matrix and fiber-

matrix interface. Results showed that inclined 

crack at interface center has no more effect on 

stress intensity factors compared the crack at 

interface edge. Aboudi [18] presented a 

continuum model capable of generating the 

transient electro-elastic field in piezoelectric 

composites of periodic microstructure, caused 

by the sudden appearance of localized defects. 

Reza and Shishesaz [19] investigated the effect 

of viscoelasticity of polymeric matrix of 

composite materials on the transient stress 

concentration due to a sudden break in its fibers 

and used explicit finite difference method.  

In present work, transient distribution of stresses 

in a finite width hybrid composites laminate 

subjected to a sudden internal crack is studied. 

The hybridization effect, arrangement of fibers 

in the laminate, crack location as well size of the 

sudden crack on dynamic stress overshoot is well 

examined. The introduced transient time is 

defined as the time required for each fiber to 

reach its static equilibrium, once the crack is 

initiated.  

  

2. Derivation of formulas 

 

To derive the necessary field equations, it is 

assumed that all the fibers are aligned in parallel 

and can take extensional load only. Each matrix 

bay sustains only shear stress. This is a good 

assumption in most composites with a phenolic 

resin or weak in tension. Furthermore, it is 

assumed that the laminate is subjected to a 

tensile load with the  magnitude of P, applied at 

infinity.  

To derive equilibrium equations, additional 

assumptions are made as follow: 

 There is a perfect bound between each 

fiber and its neighboring matrix bays. 

 All fibers behave as linear elastic up to 

the point of fracture. 

 Fibers and matrix are assumed to be 

homogeneous. 

In the derivation of formulas, two types of fiber 

arrangement are postulated in the laminate. 

These arrangements are discussed separately in 

the subsequent sections.  

 

2.1 Hybrid Square Arrangement  

 

Fig. 1 shows the cross section of a laminate with 

a square arrangement. Here, "d" represents the 

spacing between any two adjacent fibers while x 

is measured along the direction of filaments. 

Coordinate axes y and z are taken to be normal 

to fibers as shown.  

 
Fig. 1. Cross section of a hybrid laminate with a 

square arrangement for fibers. 
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According to Fig. 1, n represents the number of 

any fiber in any layer, ranging from 1 to N. 

Moreover, m corresponds to the number of 

layers, ranging from 1 to M. For this type of fiber 

arrangement, each filament is influenced by four 

shear stresses from the neighboring fibers. The 

laminate edge can end in an LM (low modulus) 

or an HM (high modulus) fiber. It is assumed that 

the type of fibers in every other row is the same. 

The asterisk symbol (*) is used to highlight the 

properties associated with LM fibers.   

The crack can initiate at x=0, within the fm
th layer, 

from the f th fiber, while r corresponds to the total 

number of broken fibers. Using linear elasticity 

equations, one can show that the force balance in 

any LM fiber (see Fig. 2) results into;  

 

 

 
Fig. 2. Force equilibrium on a portion of low modulus 

fiber in a square arrangement. 
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In the above equation, m* is mass per unit length 

of an LM fiber while 
*

,m na is its corresponding 

acceleration value. Substituting shear stresses in 

terms of fiber displacement, differential-

difference Eq. (1), may be written as: 
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A similar expression may be written for an HM 

as; 
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The equilibrium equations for the edge fibers 

may be written using the same procedure. In a 

matrix notation, the equilibrium equations for 

the whole laminate may be written as; 
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Displacement vector u has the order of M×N and 

is defined as in Eq. (5). Moreover, u" and u  

correspond to the derivative of u with respect to 

x and time respectively.  
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The coefficient matrices m, e and L1 are 

expressed as; 
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In Eq. (7), K is equal to M×N and I is the Nth 

order identity matrix. Moreover, matrices A1 and 

B1 are equalto; 
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2.2 Hybrid hexagonal arrangement 

 

Fig. 3 depicts a hexagonal arrangement of fibers 

in the hybrid composite laminate. Each fiber is 

surrounded by six filaments. The coordinates m 

and n are as shown in the figure. Using the shear 

lag model along with linear elasticity equations, 

the equilibrium equation in the nth LM fiber in 

the mth layer results into;  
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The above equation may be written in terms of 

fiber displacements as; 
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Fig. 3. Cross section of a hybrid laminate with 

hexagonal arrangement for fibers. 
 

A similar equation may be written for HM fibers. 

Similar to that of square arrangement, 

equilibrium equations for the edge fibers may be 

written as well. In a matrix notation, the 

equilibrium equations for the whole laminate 

may be represented as; 
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where matrix L2 is equal to; 
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Parameter K is defined as mentioned above. 

Matrices A2, B2, C and J are equal to: 
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3. Initial and boundary conditions 

 

Before any crack initiation, the normal load in 

any fiber equals its applied value at x = ∞. This 

means that, 
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Moreover, at the moment of fiber and matrix 

breakage, the instantaneous velocity of the cut 
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Due to symmetry (crack initiates at x = 0), the 

displacement in all intact fibers at any time may 

be written as; 
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Moreover, the load in the broken fibers after the 

cut is; 
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4. Non- dimensional parameters 

 

Differential Eqs. (4 and 11) may be written in a 

non-dimensional form, using the following non-

dimensional parameters: 
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By definition, Vf and Vm are fiber and matrix 

volume fractions in the lamina, respectively. In 

Eq. (19), Gh is the effective matrix shear 

stiffness and t is the transient time. Upon the 

application of these parameters, equilibrium Eqs. 

(4 and 11) may be written in a non-dimensional 

form as; 
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dimensional form of Eqs. (6 and 7), respectively. 

Furthermore, the initial boundary and boundness 
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5.  Finite difference solution of equilibrium 

equations  

 

Equilibrium Eqs. (20 and 21) are much alike 

except for the coefficient matrices L1 and L2. 

Hence, the solution method presented covers 

both cases. Moreover, these equations form a set 

of equations with two variables. Now, 
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introducing v=N(m-1)+n, one may write the 

elements of the U matrix as; 

(27) ,m n vU U  

 

To solve equilibrium equations, it is assumed 

that each fiber has a finite length L which can be 

divided into equal segments with the size of 

(See Fig. 4) such that,  

 

(28) 

 

 
zL S    

 
Fig. 4. Finite difference grid of composite fibers. 

 

In Eq. (29), Sz corresponds to the number of 

divisions selected on each fiber. Labeling each 

segment by i, one may write,  
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Labeling each time step  by j, we may write;   
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Denoting St as the number of time segments 

between the state of crack initiation and that of 

static equilibrium, then, the total transient time is 

given by;  
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Here, a term such as 
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vU corresponds to the 

displacement of nth fiber in the mth layer, (at a 

distance i    from the center of nth fiber) at 

time j   , after the crack initiation.
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Using Eqs. (32 and 33), the differential- 

difference Eq. (21) may be written in a finite 

difference form as; 
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where; 
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Eq. (34) expresses the displacement of ith portion 

of (m,n)th fiber at the (j+1)th time step. Due to the 

presence of the terms 
,i j

vU
 
and 
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, it is 

necessary to calculate the displacement of the 

corresponding portions of the fiber at the first 

two time steps (j=1 and j=2), using initial 

conditions [20].  

Application of first forward difference to Eq. 

(23) leads into;  
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Taking advantage of symmetry in the laminate, 

the mid-center displacement of all fibers at the 

first time step (i =1) equals zero. This means that
(1,1) 0
v

U  . Using this concept along with Eq. 

(36), displacements in all portions of fibers at the 

first time step (j=1) are equal to;   

 

(37) 

(2,1) (3,1)

( ,1)

, 2 , ,

( 1)

1 M×N

v

z

v

v

S

z

U U

U S

v

 



   

  

 

 

 

At the next time step, where crack initiation 

starts, displacements in other portions of each 

fiber may be obtained using Eq. (22). Using the 

first forward difference, we have;  

 

(38) 

( ,2) ( ,1)

( , ) 0

i i

v v v
U UU

 
 


  

 
 

 

Hence, the displacement at the second time step 

(j=2) may be written as; 

 

(39) 
( ,2) ( ,1) 1 M×N , 1i i

zv v
U U v i S      

 

Using boundary condition (24), displacement in 

all intact fibers, at , may be written as; 

 

(40) 
0,
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& ( )
0 (3 ) &

   (1 N)
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  

 
   

 

 

Displacement of any broken fiber at any time ,  

may be obtained using boundary condition (27). 

To write the first order derivative of ,m nU with 

respect to   at point i =1, the central difference 

is used instead. This results in a truncation error 

with the order of
 

2( ) as opposed to that of 

( )  for the former. Hence, displacement in 

the second time step (j = 2) is obtained as 

follows; 

 

(41) 

(2, ) (0, )

(0, ) (0, ) 0
2

(3 ) ( )

j j

v v v
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U UU
P

j and f n f r and m f
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 


  

 

    

 

 

Upon proper substitution of the results from Eqs. 

(40 and 41) into Eq. (34), displacement in the 

intact and broken fibers at 
1    may be 

written as; 

 

(42) 
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(43) 
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Once displacements at the first two time steps (j 

= 1, 2) are determined from Eqs. (38 and 39), 

from the third time step on, their magnitudes at 

any other point (except for the points in y-z plane 

of symmetry perpendicular to the direction of 

fibers, see Fig. 1), can be obtained using Eq. 

(37). The corresponding displacements in the 

mid-layer are obtained from Eqs. (42 and 43).  

By definition, stress concentration factor Kr, is 

the ratio of the local load to that applied at 

infinity. Using this definition, along with the 

non-dimensional form of the applied load 

described in Eq. (24), one may solve for the 

instantaneous stress concentration in the 

laminate using the following equation:     

 

(44) 
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The maximum value of Kr for any crack size is 

called dynamic stress concentration Kd. The ratio 

of Kd to that of its static value (Ks) is called 

dynamic overshoot 
r . A similar procedure may 

be adapted to solve Eq. (21).         

 

 

6. Results and discussion 

 

Using MATLAB programming language, 

displacement fields in each fiber, at the onset of 

fiber breaks is obtained at each time step. This 

process is continued untill static equilibrium is 

reached within each filament. The mechanical 

properties of each lamina used in the analysis are 

given in Table 1. 

 

Table 1. Mechanical properties of selected materials 

in the hybrid laminate. 

Material 
Ef 

(GPa) 

Density, ρ 

(kg/m3) 

Graphite fiber (HM) 250 13.8 

Glass fiber type S 

(LM) 
86 24.4 

 

6.1 Single type fiber laminate 

To deduce the results on a non-hybrid composite 

(a laminate with a single type fiber), the ratio of 

LM to HM stiffness, namely R, as well as Q (the 

ratio of mass per unit length), is set equal to 1. 

To check the accuracy of the results based on the 

present work, M or the total number of layers is 

set equal to 1. The deduced results for a non-

hybrid composite lamina are then compared to 

those presented by Hedgepeth in Ref. [5]. Fig. 5 

shows the effect of crack size (number of broken 

fibers) on dynamic stress concentration in the 

lamina at the transient time. The total number of 

fibers in the lamina is assumed to be 25. Here, 

crack emanates from center fiber and is normal 

to the filaments. The results in Ref. [5] are only 

presented for r (total number of broken fibers) up 

to 3. A close match is observed between the two 

cases. 

To further expand the results to a laminate with 

21 layers, it is assumed each layer is composed 

of 25 filaments. Furthermore, a square 

arrangement is postulated for the fibers while it 

is assumed the crack emanates in the mid-layer 

and moves symmetrically toward the edges.  

According to Fig. 6, for a sudden crack with r=5, 

maximum dynamic stress concentration occurs 

in the intact fiber embedded in the first intact 

layer (on the top or bottom of the cracked layer), 

within a fiber next to the center of the crack. This 

value reads to be Kd=1.53. Compared to static 

stress concentration (Ks=1.30) this shows 18% 

increase. Simultaneously, the dynamic stress 

concentration at the first intact fiber bounding 

the crack tip happens to be Kd=1.30. Compared 

to static stress concentration (Ks=1.21), this 

shows 7.5% increase . 

 
 

 
Fig. 5.  The effect of crack size on dynamic stress 

concentration in the first intact fiber bonding the 

crack tip in lamina.  

 

 
Fig. 6.  Dynamic stress concentration in the intact 

layers bonding the crack for a square arrangement of 

fibers.  

 

The effect of crack location on dynamic 

overshoot is shown in Fig. 7. It is observed that 

cracks in the first layer (top or bottom) can 
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increase the dynamic stress concentration by 

almost 7%. Cracks further away from these two 

layers have no effect on Kd.  

Fig. 8 represents the effect of crack size on 

maximum dynamic stress concentration in the 

laminate. According to this figure, as r increases, 

the dynamic overshoot reaches a steady value of 

1.17. Fig. 9 shows similar behavior for a 

hexagonal arrangement of fibers as crack size 

increases. Except that for small cracks, the 

dynamic overshoot seems to be smaller. As the 

number of broken fibers (crack size) increases, 

the dynamic overshoot reaches a steady value of 

1.17.  
 

 
Fig. 7.  The effect of crack location on dynamic stress 

concentration.  

 

 
Fig. 8.  The effect of crack size on dynamic stress 

concentration in the intact fiber adjacent to the middle 

broken fiber (square arrangement of fibers). 

 

Table 2 compares the results obtained on 

dynamic and static stress concentration within a 

lamina, and that of a laminate with both 

hexagonal and square arrangements. Here it is 

assumed that M=20 and N= 25. It is realized that 

for the same crack size, the peak dynamic stress 

in a lamina is more than that predicted within a 

laminate. For example, for r=3, the value of 

dynamic stress concentration within a lamina is 

almost 1.5 times larger than that of a laminate. 

Examining the results on this table reveals that 

except for r=1, the magnitudes of dynamic stress 

concentrations for moderate crack sizes are 

higher in a hexagonal arrangement, as compared 

to those of square arrangement. For large crack 

sizes, the results seem to be the same.    

 

 
Fig. 9.  The effect of crack size on dynamic stress 

concentration in the intact fiber adjacent to the middle 

broken fiber (hexagonal arrangement of fibers). 

 
Table 2. Comparisons of the dynamic and static stress 

concentration factor in a lamina and a single type 

composite laminate. 

 

r 

Lamina 
Square array 

laminate 

Hexagonal array 

laminate 

Kd Ks Kd Ks [6] Kd Ks [6] 

1 1.53 1.33 1.26 1.15 1.19 1.10 

2 1.91 1.60 1.35 1.20 1.42 1.22 

3 2.2 1.83 1.47 1.26 1.47 1.23 

4 2.5 2.03 1.50 1.28 1.47 1.28 

5 2.70 2.22 1.53 1.30 1.53 1.31 

6 2.94 2.39 1.53 1.31 1.53 1.33 

7 3.15 2.55 1.54 1.32 1.54 1.33 

8 3.35 2.70 1.54 1.32 1.54 1.33 

 

6.2 Hybrid laminate 

 

To obtain the effect of a sudden crack on 

dynamic stress concentration in a hybrid 

composite laminate, the following properties in 
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Table 1 are used for the fibers. For the hybrid 

laminate, "R", or the ratio of LM to HM fiber 

extensional stiffnesses is set equal to 0.33. This 

assumption holds true for a hybrid composite 

with intermingled glass (as LM) and graphite (as 

HM) fibers.  

 

 6.2.1 Square arrangement of fibers 

 

To deduce the results presented on Figs. 10 and 

11, it has been assumed that M=20 and N=25. 

The crack cuts through one layer and emanates 

from an HM fiber at the center while bonded by 

an HM fiber at its tips. For a square arrangement, 

this means that an LM fiber experiences the peak 

stress concentration which takes place in the 

middle of the layer above the crack. According 

to Fig. 10, for breaks more than 3 fibers, there 

appears to be no change in peak dynamic stress 

concentration. 

 

 
Fig. 10.  The effect of crack size on dynamic stress 

concentration at the crack tip due to a sudden crack in 

hybrid laminate with square arrangement. 

 

According to Fig. 11, for the same crack size, the 

peak dynamic stress concentration in the top 

layer adjacent to the crack is much higher than 

that at the crack tip. This behavior was also 

observed in a laminate with single type fiber. 

The peak dynamic overshoot in LM fibers, as 

compared to that of a single type fiber, increases 

as the laminate is hybridized. For example, 

according to Table 1, for r=5, the peak dynamic 

stress concentration in the first top layer 

(adjacent to the crack) is 1.52, while Fig. 11 

shows a value of  2.14. This corresponds to a 

29% increase in Kd. 

Now lets consider a case in which a crack 

emanates in an LM layer. In this case, the top and 

bottom layers are composed of HM fibers. The 

results for this case are shown in Figs. 12 and 13. 

The results in Fig. 12, correspond to peak 

dynamic overshoot value of 1.33 at the crack tip, 

while according to Fig. 13, a value of 1.22 is 

obtained at the top or bottom layer. This shows 

an increase of 8.3% in a dynamic stress 

concentration. Hence, hybridization effect tends 

to even out peak dynamic overshoot within the 

laminate. According to Fig. 14, an increase in 

volume fraction ratio (Vm/Vf) only advances the 

occurrence of peak Kr without changing its 

magnitude. Also, for cracks emanating at the 

first top layer, the peak value of Kr shows a 

higher value compared to that of an inner crack. 

For example, according to Fig. 15, for a square 

arrangement, for a surface crack with r = 1 (crack 

at the first top layer), the peak value of Kr is 1.35 

while for the inner cracks (cracks at the second 

or any other inner layer) constant peak value of 

1.26 is obtained. 
 

 
Fig. 11.  The effect of crack size on peak dynamic 

stress concentration on the crack top layer due to a 

sudden crack in the hybrid laminate with square 

arrangement. 
 

 
Fig. 12.  The effect of crack size on dynamic 

overshoot in the first intact LM fiber at the crack tip 

for a hybrid composite laminate. 
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Fig. 13.  The effect of crack size on dynamic 

overshoot in the intact HM fibers in the top layer 

adjacent to the crack in the hybrid composite 

laminate. 

 

 
Fig. 14. The effect of volume fractions ratio on 

dynamic stress distribution. 

 
6.2.2 Hexagonal arrangement of fibers 

 

According to Figs. 15-18, similar behavior is 

observed for the hexagonal arrangement of 

fibers. Figs. 15 and 16 show the dynamic stress 

concentration at the crack tip and the top layer 

adjacent to the crack, respectively. Here, the 

crack initiates from an HM layer. Comparison of 

the results in Figs. 15 and 10 reveals that the 

dynamic stress concentration at the crack tip is 

less for the hexagonal arrangement of fibers. 

This reduction is almost 7.5% at r=5. Also, a 

close comparison of Figs. 16 and 11 reveals 

shows that this behavior occurs for smaller 

cracks.  

Figs. 17 and 18 show similar behavior where the 

cracked layer is composed of LM fibers. Fig. 17 

shows the dynamic stress concentration at the 

crack tip while in Fig. 18, the deduced values 

correspond to those at the top layer adjacent to 

the cracked layer.   

 
Fig. 15.  The effect of crack size on dynamic stress 

concentration in HM fibers at the crack tip due to a 

sudden crack in hybrid laminate with hexagonal 

arrangement. 

 

 
Fig. 16.  The effect of crack size on dynamic stress 

concentration in the top layer adjacent to the crack 

due to a sudden break in the HM layer with hexagonal 

arrangement of fibers. 
 

 
Fig. 17.  The effect of crack size on dynamic stress 

concentration in LM fibers at the crack tip due to a 

sudden break in hybrid laminate with hexagonal 

arrangement. 
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Fig. 18.  The effect of crack size on dynamic stress 

concentration in the top layer adjacent to the crack 

due to a sudden crack in the LM layer with hexagonal 

arrangement for fibers. 

 

7. Conclusions 

 

The effect of a sudden crack initiation both in a 

single type and hybrid unidirectional laminate is 

studied in this research. The values of dynamic 

stress concentrations are deduced and compared 

to those of a lamina. Also, the peak stress 

concentration during transition time for fibers to 

reach static equilibrium is calculated and 

compared with those of static values. The effect 

of fiber arrangement on dynamic overshoot as 

well as edge effect is also examined. According 

to the results, for similar crack sizes, the values 

of static stress concentrations in a lamina are 

much below those obtained in a laminate. For 

example, for three broken fibers, the dynamic 

stress concentration has a value of Kd= 2.2 in the 

lamina, while for a laminate a value of Kd = 1.47 

is obtained. Moreover, for small cracks, a 

laminate (with 20 layers and 25 fibers in each 

layer), with square arrangement of fibers results 

into higher values of dynamic stress 

concentration. For larger crack sizes, the results 

obtained for the two arrangement of fibers seems 

to be the same. Furthermore, the peak stress 

concentration during the transient time is higher 

(50%, for r = 3) in a lamina as compared to those 

of a laminate. Results show that for a single type 

fiber, the peak static and dynamic stress 

concentrations within a laminate, with an inside 

crack, occur at the top or bottom layer bounding 

the cracked layer. For a laminate with a surface 

crack (crack at the top or bottom layer) the 

dynamic stress concentration is increased (for r 

= 1, the increase is about 18%). Moreover, an 

increase in the ratio of volume fraction Vm/Vf 

only advances the occurrence peak values of Kr. 

As a single type laminate is hybridized, the 

layers with LM fibers bounding the cracked 

layer, experience more stress concentrations. 

The opposite is true if the cracked layer is 

composed of HM fibers. Here, hybridization 

tends to even out the dynamic stress 

concentration within the laminate. For a crack 

initiating in an LM layer, the peak dynamic 

overshoot occurs at the crack tip. Due to the size 

of the resulting crack, the peak stress 

concentration can either take place in the layer 

adjacent to crack or at the crack tip.   
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