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 In this paper, a novel approach for finite-time stabilization of uncertain 
affine systems is proposed. In the proposed approach, a fast terminal 
sliding mode (FTSM) controller is designed, based on the input-output 
feedback linearization of the nonlinear system with considering its 
internal dynamics. One of the main advantages of the proposed approach 
is that only the outputs and external states of the system should be 
measured. Moreover, in order to realize finite-time convergence of the 
output variables, a set of switching manifolds with a recursive procedure 
is utilized. Finally, robust stability and efficacy of the proposed control law 
are shown through computer simulations. 
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1.  INTRODUCTION 

The sliding mode control (SMC), is a famous method in 
nonlinear control field. The main advantages of SMC 
are its robustness against parameter variations and 
external disturbances and its simple implementation 
[1, 2]. However, a sliding mode controller only 
guarantees asymptotic convergence of the state 
variables on sliding surface [3, 4]. Therefore, the states 
of the system cannot reach an equilibrium point in a 
finite time. While, finite-time convergence of the state 
variables is necessary for many practical systems such 
as guidance problem and robot manipulators. In recent 
decades, a terminal sliding mode (TSM) method has 
been developed to realize finite-time stabilizing of the 
state variables on a sliding surface [5, 6]. The literature 
on TSM shows a variety of approaches. In [7, 8], a finite-
time disturbance observer based on NTSMC has been 
developed for flexible air-breathing hypersonic vehicle 
and active permanent magnet linear motors, 
respectively. A research branch has proposed the TSM 
controller for applicant systems, for instance in [9], 
robust TSM for the lateral motion of under-actuated 
autonomous underwater vehicles has been developed 
and in [10, 11], the TSM method has been proposed for 

the control of hovering and landing of asteroids and 
induction motors. Some other research works have 
focused on transforming the dynamic model of a 
system into its corresponding canonical form.  

The TSM controller is applicable in the case of 
nonlinear systems with special structures. For 
instance, in [12], first a nonholonomic system is 
converted into a chain form by a particular 
transformation; then, the FTSM controller is applied to 
it. Also, in [13], a pure feedback form has been 
considered for the nonlinear system and then, it is 
transformed to the canonical form and finally, the 
FTSM controller is designed. Indeed, design of a FTSM 
controller is straightforward for a canonical dynamical 
form [14, 15]. However, one of the challenges in design 
procedure of a FTSM controller is transformation of the 
system dynamics to a canonical form.  

In the last decade, an approach has been proposed 
to transform a nonlinear system to the canonical form 
using the input-output feedback linearization method 
[16]. However, this method is applicable only for 
systems with a relative degree of n without internal 
dynamics and it is necessary to measure all the state 
variables. This paper considers finite-time stabilizing 
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of nonlinear systems in the presence of model 
uncertainties and external disturbances.  

The main result of this paper is an extension of the 
FTSM technique to design a robust controller based on 
the input-output feedback linearization with 
considering the internal dynamic of nonlinear systems. 
First, based on the normal form representation of the 
system, the system is divided into two parts, which are 
called the internal and the external parts. Then, the 
external part of the system is transformed to a 
canonical form using the input-output feedback 
linearization method.  

It is worth noting that, this approach is different 
from previous versions of FTSM. In previous versions, 
it is required to measure all the state variables of the 
system; whereas, in the proposed method only the 
outputs and the external states should be measured. 
Also, in order to ensure finite-time convergence of the 
output variables, a set of sliding surfaces with recursive 
procedure are utilized.  

This paper is organized as follows: First, in Section 
2, the dynamical model of the system and some 
preliminaries are introduced. In Section 3, the 
proposed FTSM controller is designed based on the 
input-output feedback linearization. Section 4 
represents the efficacy of the proposed method using 
computer simulations.  Finally, the conclusion of the 
paper are presented in Section 5. 

2.  PRELIMINARIES 

 Consider a nonlinear dynamical system as follows: 
 

      
 

x f x g x u d t x

y h x

  



,
                                           (1) 

 

where nx R is the state vector,  f x ,  g x are the 

nonlinear smooth functions in a domain nD R  and 

u R  is the scalar control input. Also,  h .  is a scalar 

smooth field on nR and  d t x, represents the 

bounded disturbances of the system. In order to apply 
TSMC technique to system (1), the following 
conversion is used to transform dynamical system (1) 
into the normal form:  
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1
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                                                     (2) 

where r is the relative degree of system (1)( ), 

and   depicts the Lie derivative of h with respect to 

f. Also, the function  may be chosen such that the 

following conditions are ensured [17]: 
1. Transformation (2) is a diffeomorphism function 

on a domain . 

2.  for 
0

1 ,i n r x D      

where ,  and  are nonlinear 

functions evaluated using the system equations [13]. 

Also, , are the internal and external 

state vectors, respectively and the matrices A and B are 
considered as follows: 
 

0 1 0 0

0 0 1 0

0 1

0 0 0

 
 
 
 
 
 
 
 
 
 

A  ,                                   (3) 

Let us define  and 

. Also, an external disturbance 

appears in the derivative of the last state, therefore, 
equations (3) may be rewritten as,  

{
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In the differential equations (4), it is assumed that 
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 where  is an 

uncertain term corresponding to unmodeled dynamics 

of the system; Also  is the uncertainty of the 

input coefficient. Moreover,  and the reference 

equation, , are the nominal parts of and 

functions, respectively. Let us define  as 

the summation of uncertainties and disturbances, i.e.,  
 

        t x u f g u d t x        , , , , ,                    (5) 

After applying the transformation (2), system (1) 
may be rewritten in the normal form, as follows: 

 

 
      

,

,

in
f

A B x u d t x x

  

   



    
                            (6) 

 

Theorem 1 [18]: Suppose that, for a nonlinear 

dynamical system  x F x , with the initial condition 

 0 0
x t x , there exists a continuous function V(x), 

defined on an open neighborhood of the origin, nU R

, such that: 

1.  V x is positive definite on U 

2.  There exist real numbers 0c  and 0 1  , such 

that, 

   V x cV x x U
   ,                                               (7) 

Then, there exists an area 
0

U U such that any 

V(x), originated from U0 will reach V(x) = 0 in a finite 
time.  

For the Proof, See [18]. 
 

3.  CONTROLLER DESIGN  

In order to implement the FTSM controller, the 
conversion (2) is applied to system (1). So that, the 
external dynamics of the system is transformed to the 
canonical form, as follows: 
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            (8) 

 
As it is seen, the state variables   as well as the state 

variables   and the input variable u are appeared in 

equations (8). If the state variables  are not 

measureable, then implementation of the FTSM 
controller is not possible. Now, the state variables 

are considered as disturbances in the external 
dynamics (8). Then, using an upper bound for these 
state variables, an FTSM controller may be designed. 

Remark 1: Since, in the design procedure the internal 
state variables   are considered as disturbances in the 

external dynamics, the internal dynamics should be 
bounded. Therefore, the internal dynamics should be 
stable. 

In this paper, in order to design the control law for 
tracking, the following recursive sliding surfaces are 
considered in which the number of sliding surfaces is 
equal to the relative degree of the system: 
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where 
d

y  is the desired output, 
1 1

0
i i

 
 

, , and the 

parameters pi and qi are odd positive integers for 

0 2i r ,..., , where  i i
q p . 

Remark 2: The sliding surface is equal to 

     1 1 10

q

p
d d d

S y y y dt    
 

       
 
 

   (10) 

when the relative degree is equal to one. 
 

The following theorem proposes a stabilizing control 
law for system (8): 
Theorem 2: Consider the dynamical system (8). Then, 
the following control law will stabilize the system  in a 
finite time: 

     , ,
e n

g g g        f   ,

 g   ,

 n
f 

 n
g   e

f .

 e
g .  x t ,
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where 0, ,
k k

     and p, q and   are degrees of 

freedom. Also  1r k

k
S

 
means

1

1

r k

kr k

d
S

dt

 

 
. 

                                                                                                                                      

Proof: Consider the Lyapunov function . 

Using equations (9), the time derivative of is as, 

2

2

1 1

1 2 1 2 1 2

r

r

r r

r r r r r r

V S S
q

d pS S S S
dt
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
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Then, by substituting the derivatives of Si’s, step by 
step, the following equation is achieved: 

   
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On the other hand,    
0 1

r r
S  , therefore, 
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                                                                                                 (14) 
 

Now, by substituting the control signal (11) into 
(14) and doing some simplifications, the following 
equation is achieved:  

 1 1 1

q

p
r r r

S S S t    
  
    , ,                                      (15) 

Then, 
1r

S


 is substituted in V as follow: 

 2
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p
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(16) 

where the perturbation term  t  , , is unknown. 

However, some other information about it, like an 

upper bound on  t  , , , is known. Now, by inserting 

the control law (11) into (6), we obtain, 
 

                 

According to [13], we may derive,   
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Also, suppose that the following term is bounded to 
0

1


, i.e., 

 
 
 

       
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                                                                                                 (19) 

Hence,  t  , ,  is assumed to satisfy the following 

inequality 
 

      
0

1
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where 
0

1
 : 0 D R    ,  is a positive continuous 

function.  
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If an appropriate   is chosen such that the following 

condition is satisfied, the FTSM controller results a 

negative definite V which leads to asymptotic stability 

of system (8): 
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If   has the above condition and 
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may be rewritten as follows:   
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  0 5

1
2

r
V S V 


    .                                            (23) 

Furthermore, according to the theorem 1, we can 
reach finite-time stability, if   has a positive value. 

Consequently, according to the terminal attractor 

1 1 1

q p

r r r
S S S  /

- - -
- -  in a finite time, the states will reach 

the sliding manifold 
1

0
r

S

  [18]. According to (9), it 

can be easily shown that when
1

0
r

S

 , the sliding 

surface 
2r

S


 will converge to the origin in a finite time, 

and this continues for 
1 1r

S S


, ,  and 
0

S . Therefore, 

finite-time stability of system (8) with the proposed 
control law is proved. As a result, the outputs of the 
system will converge to the origin in a finite time.  

Remark3: In order to solve singularity problem, the 
surfaces should converge to zero sequentially from 

2k r   to 0k  , if 

 

1
2 0k

k

q r k
k r

p r k

 
   


, ,...,                                     (24) 

Then, sliding surfaces converge to zero sequentially 

from 2k r   to 0k  with no occurring singularity. 

4.  COMPUTER SIMULATIONS  

In this section, computer simulations are performed 
to illustrate the effectiveness of the proposed control 
law (11) in finite-time stabilization of two examples. 

The external disturbance  d t  is considered as: 

     2 3 2 0 8sin .d t u t t     

4.1. STABILIZATION EXAMPLE  

Consider the following uncertain nonlinear system 
[13]: 

{
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                                                       (25) 

where 
i

x R  (for 1 3i  ,.., ), u R  and the relative 

degree of the system is r = 2. Thus, the normal form of 
the system is as follows [13]: 
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where
1

x   and    1 2 2 3
x x  , , . The terminal 

sliding manifolds 
0 1

S S,  are designed as, 

0 1

3

5
1 2 1 1

S

S



  



  

                                                                 (27) 

 

where, the parameters are selected as 
0 0

1  ,  and 

0 0
3 5q p , . According to the theorem 2, the terminal 

sliding mode controller will be as follows: 
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 
 

tan   (28) 

 
In the simulations, the control and surface 

parameters are  1 3q p ,  and 0 5 10 5a    . , , , 

respectively. 

The time responses of external states  2 3
x x,  and 

the internal state
1

x , are illustrated in Fig. 1. It is seen 

that the external states of the system has been reached 
to zero in a finite time and the internal state has a stable 
behavior. 

 

 
Figure 1: Time responses of the state variables. 
 

Also, the time responses of the sliding surfaces and 
the control signal are shown in Figs. 2, 3. As it is seen, 
in this case, S0 and S1 converge to origin in a finite time 
and FTSM controller is robust to the bounded system 
uncertainties and disturbances. 

4.2. TRACKING EXAMPLE  

The second example, is used to evaluate the 
performance of the proposed method. Consider the 
following system: 

 
 
 
 



Masoud Keshavarz & Mohammad Hossein Shafiei 

106 

 
 

Figure 2: The time responses of the sliding surfaces.  

 

 
Figure 3: The time response of the control signal, in a closed-
loop system. 
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It can be easily checked that the relative degree of 

the system is r = 2. It is desirable that 
1

  tracks the 

reference 
d

y . 

The terminal sliding manifolds 
0 1

S S,  designed as, 
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                                 (30) 

According to the theorem 2, the terminal sliding 
mode controller will be as follows: 

 

3 1 1

2 3
21 9 54 0 25
9

. sinu x t e ee S S 
 
       
 
 

    (31)  

The external state variables are as,    2 3 1 2
, ,x x    

and 
1

x  . For simulations, the control values are

4 1 5  , . . Also, the external disturbance  d t  is 

considered as a tsin . The simulation results are as 

follow:  
 

 
Figure 4: Time response of the internal state. 

 
Figure 5: Time response of the external state variable (X2). 
 

 

Figure 6: Time response of the external state variable (X3). 

As it is shown in Figs. (4-6), the state variables 
converge to the origin in a finite time and the controller 
is robust to the uncertainty. In Fig. 7, the sliding 
surfaces are depicted. In this example, relative degree 
is 2 so that, we have 2 sliding surfaces.  

As illustrated in this figure, first 
1r

S


reaches to zero 

and then 
2 0
, ,

r
S S


 converge to the origin. Also, as it is 

seen in Fig. 8, the control signal has a bounded value.   
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Figure 7: The time response of sliding surface.  

 

 

Figure 8: The time response of the control input. 

4.3 FIGHTER AIRCRAFT 

A simplified model of a fighter aircraft is extracted 
from the nonlinear model of six degrees of freedom 
which may be considered as follows [19]: 

  
 

1 8254 0 0175 11 3404 1 9821

3 2 210 0 0886 1 75 10

0 5923 50 7296 0 1145
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. cos . . .

. . ,

. . .

. . .

v
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q u

q q u





 



  

   

   

   

 

where the airspeed v (m/s), angle of attack   (deg), 

and pitch angular rate q (rad/s) are state variables and 
the deflection of elevator u (deg) is the control input of 
the model. The main limitations of this control problem 

are 10u   and the limited overshoot.  

The control object is set the angle of attack to a 

reference attitude 5°. According to the dynamical 
model, the relative degree is equal to 1 .  

It is clear from remark 2 that the sliding surface is 

 5s   . The control signal is obtained as follow: 

   5 5    
 

      
 
 

q

ps  

  
1

-0.5923 50.7296q
0.1145

u  

   
5 27

 




           +0.5 -5 +1.5 -5
/

                                  

As shown in Fig. 10, the output signal is tracked the 
desired angle in a finite time. Also, the control signal is 
bounded. 

 

Figure 9: The time response of the output.  

 

Figure 10: The time response of the control input. 

 

Figure 11: The time response of the surface. 

5.  CONCLUSION 

 In this paper, a new class of FTSM controllers is 
developed in order to stabilize nonlinear systems in a 
finite-time. Firstly, the model of the system was 
transformed to the normal form. In this new form, the 
state variables of internal dynamic were supposed as 
disturbances in the external dynamics. Then, based on 
input-output feedback linearization, the FTSM 
controller was designed to realize finite-time stability 

(32) 
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of the output variables. An important benefit of this 
method is that all the state variables are not necessary 
to be measured in designing of the control law. Finally, 
efficacy of the proposed method in the finite-time 
stabilization of output variables and robustness of 
control law against the external disturbances were 
shown using computer simulations.  
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