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Article info: Abstract 
Functional electrical stimulation is the most commonly used system for 
restoring function after spinal cord injury. In this study, a model consists 
of a joint, two links with one degree of freedom, and two muscles as 
flexor and extensor of the joint, which simulated in MATLAB using 
Sim-Mechanics and Simulink Toolboxes, is used. The muscle model is 
based on Zajac musculotendon actuator and composed of a nonlinear 
recruitment curve, a nonlinear activation-frequency relationship, 
calcium dynamics, fatigue/recovery model, and an additional constant 
time delay, force -length and force-velocity factors. A classic controller 
for regulating the elbow joint angle; a Proportional- Integral- Derivative 
(PID) controller, is used. First, the PID coefficients are tuned using trial 
and error method, and then a particle swarm optimization (PSO) 
algorithm was used to optimize them. The important features of this 
algorithm include flexibility, simplicity, short solution time, and the 
ability to avoid local optimums. This PSO-PID controller uses the PSO 
algorithm to get the required pulse width for stimulating the biceps to 
reach the elbow joint to the desired angle. The fitness function is defined 
as sum square of error. The results of PSO -PID controller show the 
faster response for reaching the range of the set point than the PID 
controller tuned by trial and error. However, the PSO -PID is much 
better in terms of the rise time and the settling time, although the PID 
tuned by trial and error has no overshoot. The time to reach the zero 
steady state error is half in PSO -PID in comparison to PID tuned by 
trial and error. 
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1. Introduction

Individuals with C5/C6 level spinal cord injury 
(SCI) lose voluntary control of almost all 
muscles of the upper extremity. A 
neuroprosthetic system like Functional 
Electrical Stimulation (FES) can be used to 

restore paralyzed motor functions caused by 
SCI [1, 2]. FES artificially induces short 
electrical pulses to generate muscle contraction. 
FES can also be used to induce joint movement 
by stimulating the flexor and/or extensor 
muscles of the joint. Each joint is actuated by at 
least two muscle groups, flexor muscles, and 
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extensor muscles. Moreover, the maximum 

force that can be exerted by a muscle is a 

function of its length and the rate of change of 

its length, both of which can vary with joint 

angle. The tension produced in electrically 

stimulated muscle depends on the intensity and 

frequency of stimulation. The stimulation 

intensity is a function of the total charge 

transferred to the muscle, which depends on the 

pulse amplitude, duration, and frequency as 

well as the shape of the pulse train. The 

resulting torque about the joint that is actuated 

by the muscle depends on the tension in the 

flexor and extensor muscles as well as factors 

such as the biomechanics of the joint. The angle 

of a joint, or, alternatively, the torque produced 

about a joint, can be regulated by varying the 

tension produced in the flexor and extensor 

muscles of the joint. Consequently, the joint 

angle or joint torque can be controlled by 

modulating the pulse amplitude, pulse duration 

or frequency of stimulation. Typically either the 

pulse duration or the amplitude of stimulation is 

controlled [3-5]. 

In this paper, it is proposed to use a 

proportional-integral-derivative (PID) controller 

for regulating elbow angle in a negative 

feedback loop to compensate the error between 

the desired angle and the real one; and then 

optimize the PID parameters using a particle 

swarm optimization (PSO) algorithm. The 

controller is based on a nonlinear 

musculoskeletal model of the elbow joint’s 

response to electrical stimulation of the biceps. 

It should be noted that the value of coefficients 

PID controller is considered as the objective 

function of PSO algorithm. 

 
2.The model 

 

2. 1.The musculoskeletal model 
 

The musculoskeletal model that is used in this 

study, is a two-dimensional model of the arm, 

in the Transverse plane. It includes two muscles 

and one degree of freedom (elbow flexion-

extension). The range of the elbow angle is 

from 0 to 160° [6]. The body segment and joint 

parameters for the model were obtained from 

cadaver studies by Zatsiorsky [7]. These 

parameters include the position of joint centers, 

inertia and mass parameters for body segments. 

The muscles concerned here are biceps and 

triceps, a pair of antagonist’s muscles 

functioning as flexor and extensor of the elbow 

joint. The biceps has two heads; long and short 

heads. The triceps muscle group has three 

heads: lateral, medial and long heads. As it is 

focused on single joint movement control in a 

2D plane, only uni articular muscles of elbow 

joint would be considered. Therefore, biceps 

long head (LH) and triceps lateral head (LtH) 

are selected for FES control. The simplified 

musculoskeletal model is illustrated in Fig. 1 

[8].  
 

 

 
Fig. 1. Left graph is the physiological model of the 

elbow joint. Right graph is the simplified 

musculoskeletal model of the elbow joint [8]. 

 

 

2. 2.The muscle model 
 

The muscle model is based on Zajac musculo-

tendon actuator (Fig. 2) which accounts for the 

static and dynamic properties of both muscle 

and tendon. In this model, the muscle response 

to stimulation signal is composed of two parts: 

activation dynamics, and contraction dynamics 

[9]. 

 
2. 2. 1. Activation dynamics 

 

When the muscle is stimulated by the electrical 

pulses, there is a dynamic process for the 

muscle to generate the force. This electrical 

characteristic of the muscle is named as 

activation dynamics [8-10]. Muscle activation 

is composed of the effect of spatial and 

temporal summation by a nonlinear recruitment 
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curve, a nonlinear activation-frequency 

relationship, and calcium dynamics. A 

fatigue/recovery model and an additional 

constant time delay have been incorporated 

(Fig. 3). 

 
2. 2. 2. Muscle recruitment curve 

 

 It can be modeled by a piecewise function with 

two values: a threshold pulse width (recruit 

deadband), and a saturation pulse width. The 

pulse width of the electrical pulse is defined as 

z, the normalized muscle recruitment curve 

ra can be described in the following way: 
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2. 2. 3 Frequency characteristic 

 

When the frequency of stimulation pulse varies, 

it also affects the force produced by the muscle. 

This effect is defined by: 
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where, q is the characteristic factor of the 

stimulation frequency. 
 

2. 2. 4. Calcium dynamics 

 

The muscle cannot be activated and relaxed 

simultaneously, and there exists a time delay. It 

can be modeled as a first order differential 

equation. 
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where, a is the muscle activation without 

fatigue, acr qau ,  is the activation time 

constant and da is the de-activation time 

constant. 

 

 
Fig. 2. Block diagram of muscle model based on Zajac muscle - tendon actuator [9]. 

 

 
Fig. 3. Block diagram of the activation dynamics. 
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2.2.5. Muscle fatigue 

 

When stimulating the muscle electrically, the 

force generated by the muscle drops as the time 

increases. This phenomenon is due to muscle 

fatigue. It depends on the activation level, a, 

and frequency, f, of the stimulation. 
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where, P  is the fatigue, fat  is the fatigue time 

constant, rec  is the recovery time constant, 

minP is the minimum fitness, λ is the frequency 

factor on fatigue, and β is the shaping factor. 
 

2.2.6. Contraction dynamics 

 

Muscle contraction property is derived from the 

mechanical structure of the muscle (Fig. 4). 
 

 
Fig. 4. Block diagram of the contraction dynamics 

 

 

2.2.7. Force-length factor 

 

 A Gaussian-like function is used to model the 

relationship between the muscle force and 

length. 
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where, lf is a normalized factor that describes 

the relationship between the muscle force and 

muscle length, l is the normalized muscle 

length with respect to the optimal muscle 

length:
opt

m

l
l

l  . The muscle active force 

strongly depends on the muscle length ml . The 

peak force maxF occurs at the optimal muscle 

length  optl  . 

 

2. 2. 8. Force-velocity factor 

 

The muscle velocity also has an effect on the 

muscle force, and the factor vf  is used to 

describe this relationship. 
 

10.54tan (5.69 0.51) 0.745vf v                       (7) 

 

where, v is the normalized muscle velocity with 

respect to the maximum contraction 

(shortening) velocity maxv  of the muscle: 

maxv
v

v m . However, the muscle length lm 

and muscle velocity mv are very difficult to be 

measured directly during real experiment. From 

a macroscopic point of view, it can be 

calculated by the joint angle and angular 

velocity. The relationship is defined as: 
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where, θ and θ are the elbow joint angle and 

angular velocity, respectively. r  is the rest 

angle, and r is the muscle moment arm. Then, 

the force F produced by a muscle is defined as 

the product of maximum muscle force maxF  

with the dimensionless quantities lf , vf  

and ma , 

 

mvl affFF  max                                  (10) 

 

where, ma is the muscle activation with fatigue, 

pm aa  . 
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2. 2. 9. Passive torque 

 

The passive torque is derived from the passive 

element in the muscle model. For the elbow 

joint, it is modeled as: 
 























  1

2

36
exp)

2
sgn(108.72.0 7





PT

        

(11) 

where, sgn() is the signum function specifying 

the sign of its argument [11, 12]. 
 

3. PSO algorithm 
 

PSO is a heuristic global optimization method 

put forward originally by Doctor Kennedy and 

Eberhart in 1995 [13, 14]. It is developed from 

swarm intelligence and is based on the research 

of bird and fish flock movement behavior. 

While searching for food, the birds are either 

scattered or go together before they locate the 

place where they can find the food. While the 

birds are searching for food from one place to 

another, there is always a bird that can smell the 

food very well, that is, the bird is perceptible of 

the place where the food can be found, having 

the better food resource information. Because 

they are transmitting the information, especially 

the good information at any time while 

searching the food from one place to another, 

conduced by the good information, the birds 

will eventually flock to the place where food 

can be found. As far as PSO algorithm is 

concerned, solution swarm is compared to the 

bird swarm, the birds’ moving from one place 

to another is equal to the development of the 

solution swarm, good information is equal to 

the most optimist solution, and the food 

resource is equal to the most optimist solution 

during the whole course [15, 16]. The most 

optimist solution can be worked out in PSO 

algorithm by the cooperation of each individual. 

The particle without quality and volume serves 

as each individual, and the simple behavioral 

pattern is regulated for each particle to show the 

complexity of the whole particle swarm. In the 

basic PSO algorithm, particle swarm consists of 

“n” particles, and the position of each particle 

stands for the potential solution in d-

dimensional space. The particles change its 

condition according to the following three 

principles: 

1) to keep its inertia 

2) to change the condition according to its most 

optimist position  

3) to change the condition according to the 

swarm’s most optimist position.  

The position of each particle in the swarm is 

affected both by the most optimist position 

during its movement (individual experience) 

and the position of the most optimist particle in 

its surrounding (near experience). When the 

whole particle swarm is surrounding the 

particle, the most optimist position of the 

surrounding is equal to the one of the whole 

most optimist particle; this algorithm is called 

the whole PSO. If the narrow surrounding is 

used in the algorithm, this algorithm is called 

the partial PSO. Each particle can be shown by 

its current speed and position, the most optimist 

position of each individual and the most 

optimist position of the surrounding. In the 

partial PSO, the speed and position of each 

particle change according to the following 

equality [17, 18]: 
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 There are three main stages of a PSO 

algorithm, these are known as inertia weights, 

convergence factor, and selection. 
 

3.1. Inertia weights 

 

Inertia weights are put forward by some 

researchers [19, 20]. An Inertia weight   is a 

proportional agent that is related to the speed of 

last time. The influence that the last speed has 

on the current speed can be controlled by inertia 

weights. The bigger the  is, the bigger the 

PSO’s searching ability for the whole is; and 

the smaller the   is, the bigger the PSO’s 

searching ability for the partial is. In this article, 

  is equal to 1. Experimental results show that 

PSO has the biggest speed of convergence 
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when   is between 0.8 and 1.2. While 

experimenting,  is confined from 0.9 to 0.4 

according to the linear decrease, which makes 

PSO search for the bigger space at the 

beginning and locate the position quickly where 

there is the most optimist solution. As   is 

decreasing, the speed of the particle is also 

slowing down to search for the delicate partial. 

The method quickens the speed of the 

convergence, and the function of the PSO is 

improved. When the problem that is to be 

solved is very complex, this method makes 

PSO’s searching ability for the whole at the 

later period after several generations are not 

adequate, the most optimist solution cannot be 

found, so the inertia weights can be used to 

work out the problem [21]. 
 

3.2. Increase convergence factor 

 

A PSO algorithm with convergence agents is 

introduced in references [22, 23], and the 

following is the formula for its position (  ) 

changing: 




42

2

2 
                                   (14) 

 is called the convergence factor,  = 21 cc  > 

4. Generally,   is equal to 4.1, so   is equal to 

0.729.  

The experimental result shows that the 

convergence speed in the PSO algorithm with 

the convergence agent compared with the PSO 

algorithm with inertia weights, is much quicker. 

In fact, when the proper  , 1c and 2c  is 

decided, the two calculation methods are 

identical. So, the PSO algorithm with 

convergence agent can be regarded as a special 

example of the PSO algorithm with inertia 

weights. Meanwhile, the properly selected 

parameters in the algorithms can improve the 

function of the methods. 

 

3 .3. Selection 

 

The compound PSO put forward by Angeline is 

based on the basic mechanism and the selection 

mechanism created during the development of 

the computers [24]. Due to POS’s depending on 

LbestP and GbestP during its searching, the area to 

be searched is confined greatly. The 

introduction of the selection mechanism solves 

the problem gradually. The test result shows 

although selection has a better effect than basic 

PSO in the most tested functions, the result is 

less satisfying as far as the function "Griewank" 

is concerned. As a result, this method improve 

PSO’s searching ability for the partial, 

meanwhile, it makes the searching for the 

whole area less powerful. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. PSO algorithm process flowchart [19]  
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4. Hand control in the transverse plane 

 

This section examines the control flexion and 

extension movements of the elbow in the 

Transverse plane. Then coordinates of the 

model is defined in the Transverse plane. The 

authors want to the PID controllers to control 

flexion and extension movements of the hand to 

do it. In transverse plane, the path feed-forward 

control is not used because based on the 

available experiences, the authors conclude that 

the addition of this path to feedback, not only 

does not improve the system but it 

causes the system to be weaker. In Transverse 

plane, dealing with the gravity in the model is 

added to the controlling. The feedback path in 

control system is for reaching to desired range, 

feed-forward control can hold the arm in the 

desired angle. But to control the Transverse 

plane, only the PID controllers are used in the 

feedback path. Moreover, to have a better 

vision of correct movement in the Transverse 

plane, data model are applied to a model 

available in opensim software which provides 

the desired movement. One of the activities of 

daily living (ADL) is stimulated in MATLAB 

software by modeling 2 links, 2 joints and 7 

muscles. The kinematic results were recorded 

of this model in MATLAB and then processed 

and applied to a model in opensim software. 

The results of this special task are shown in Fig. 

(6). 
 

 
Fig. 6. Observation of arm movement in Transverse 

plane and application of the data record in the 

simulink model and using a kinematic model for 

opensim software. 

 

4.1. The PID controller in the transverse plane 

 

In this study, a classic controller is used to 

regulate the elbow angle; a proportional- 

integral- derivative controller. The proportional 

controller output uses a ‘proportion’ of the 

system error to control the system. However, 

this introduces an offset error into the system. 

The integral controller output is proportional to 

the amount of time. The integral action removes 

the offset introduced by the proportional control 

but it introduces a phase lag into the system. 

The derivative controller output is proportional 

to the rate of change of the error. Derivative 

control is used to reduce/eliminate overshoot 

and introduce a phase lead action that removes 

the phase lag introduced by the integral action. 

Three types of control are combined together to 

form a continuous PID controller (Fig. 7) with 

the transfer function as follows: 
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So the PID controller generates muscle 

stimulations that are proportional to the errors 

in joint angles and their time derivatives and 

time-integrals. The controller is placed in a 

negative feedback loop to compensate the error 

between the desired elbow angle and the real 

one.  
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Fig. 7. Block diagram of Proportional- Derivative- 

Integral control of the musculoskeletal model with 

set point of 80 degrees. 

 

 

4. 2. Optimizing PID controller using PSO 

algorithm  

 

The PSO method is based on swarm 

intelligence. The research on it is just at the 

beginning. Apart from the PSO and the 

simulated annealing (SA) approach, the POS 

has no systematical calculation method and it 

has no definite mathematic foundation. The 
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research on PSO concerns mainly the 

mathematic foundation and application research 

[25, 26]. The mathematic foundation includes 

the mechanical principle of PSO itself, the 

proof of its convergence, and robustness and 

etc. So it expresses the advantages of PSO 

algorithm as follows: 
1) PSO is based on the intelligence. It can be 

applied to both scientific research and 

engineering use. 

2) PSO have no overlapping and mutation 

calculation. The search can be carried out by 

the speed of the particle. During the 

development of several generations, only the 

most optimist particle can transmit information 

onto the other particles, and the speed of the 

researching is very fast. 

3) The calculation in PSO is very simple. 

Compared with the other developing 

calculations, it occupies the bigger optimization 

ability and it can be completed easily. 

4) PSO adopts the real number code, and it is 

decided directly by the solution. The number of 

the dimension is equal to the constant of the 

solution. 

The PID controller parameters are firstly 

identified by trial and error and then optimized 

using a PSO algorithm. The initial guess of the 

optimization is derived by adding a uniform 

random number in a range of [0, 1] to the 

coefficients tuned by trial and error. Then a 

further adjustment is performed with a PSO 

algorithm. The PSO-PID controller uses PSO 

algorithm to get the required pulse width for 

stimulating the biceps to reach the elbow joint 

to the desired angle [27].  

As shown in Fig. 2, new theta (elbow angle) 

can be calculated using each block formula. It is 

already known the relation between the error 

(as the input of PID controller) and controller’s 

output as the pulse width for stimulating the 

muscle. In this section, the parameters used in 

PSO algorithm are explained. One of the 

important steps in PSO is the determination of 

population number. There is no fast and thumb 

rule with regards to which is the best method to 

adopt. For a long time, the decision on the 

population size is based on trial and error. In 

this project, an initial population of 80 is used 

since there are three variable parameters. The 

convergence criterion of a PSO algorithm is a 

user-specified condition. PSO uses four 

different criteria to determine when to stop the 

solver. Another criterion is the maximum limit 

of velocity. 
k

idv   and 
k

idx  stand separately for 

the speed of the particle "i" at its "k" times and 

the d-dimension quantity of its position; 
k

idLbestP  represents the d-dimension quantity of 

the individual "i" at its most optimist position at 

its “k” times, respectively. 
k

dGbestP  is the d-

dimension quantity of the swarm at its most 

optimist position. In order to avoid particle 

being far away from the searching space, the 

speed of the particle created at its each direction 

is confined between maxdv , and maxdv . If the 

number of maxdv  is too big, the solution is far 

from the best, if the number of maxdv  is too 

small, the solution is the local optimism. 

Finally, max limit of velocity value is used 

equal to 0.1. The fitness (objective) function is 

used to provide a measure of how individuals 

are performed in the problem domain. In the 

case of minimizing problem, the fittest 

individuals have the lowest numerical value of 

the associated objective function. This raw 

measure of fitness is only used as an 

intermediate stage in determining the relative 

performance of individuals in a PSO. 1c  and 

2c is other criterion that represents the speeding 

figure, regulating the length when flying to the 

most particle of the whole swarm and to the 

most optimist individual particle. If the figure is 

too small, the particle is probably far away from 

the target field. But if the figure is too big, the 

particle may fly to the target field suddenly or 

fly beyond the target field. The proper figures 

for 1c  and 2c  control the speed of the particle’s 

flying and the solution is not the partial 

optimism. In this article, 1c  equals to 2c and 

they equal to 2 and 1r  and 2r  are random 

numbers between (0-1). Moreover, weight 

parameter is equal to 1. Another main operator 

is the selection. Griewank selection is chosen 

by the authors. Griewank selection has a better 

effect than basic PSO in the most tested 
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functions. As a result, this method improves 

PSO’s searching ability for the partial. It creates 

the searching for the entire domain less 

powerful [28]. 

 

5. Results and discussion 

 

In this section, the PID feedback control is 

primarily used to control the movement of 

flexion and extension in the plane Transverse 

control use. For flexion movement, initial angle 

and angle goal on 10 to 80 degrees, respectively 

and such as control in the Transverse plane, the 

controller outputs are separated into positive 

and negative. The positive part of the pulse 

width applied to the biceps muscle and the 

negative part, with positive sign applied to 

triceps muscle. The controller coefficients are 

set by trial and error, and then a PSO algorithm 

is used to optimize the coefficient. 

 

,3PK           ,4iK            2.0dK  

 

Then, the result of PID control for flexion 

movement (from 10 to 80 degrees) in the 

Transverse plane is in two cases of:  

A) set by trial and error 

B) optimized by PSO algorithm. 

which are provided in Fig. 8. The angle of the 

system output is represented in Fig. 8(a). It 

shows changing the angle of the elbow angle 

from 10 degrees to the desired angle of 80 

degrees. Figure 8(b) provides the pulse width 

controller output (during 20 seconds). 

The results obtained from controller response 

are compared: 

The rise time and settling time were measured 

in the state (a) were 1.01 and 2.05, respectively, 

while in (b) they were 0.24 and 0.41. The 

overshoot and steady state error in (a) were 

equal to zero but in (b) the amount of overshoot 

was equal to 0.08. 

Considering a very small overshoot and steady 

state error in the controller which is optimized 

by PSO algorithm, the conveying speed of the 

elbow angle from 10 to 80 degrees would be 

much faster. 
 

 
Fig. 8. PID controller to move the elbow flexion in 

the Transverse plane with coefficients of (a) trial and 

error, and (b) optimized with PSO algorithm. In A) 

elbow angles were compared. In B) pulse width 

were compared. 

 

6. Conclusions 

 

The aim of the present paper is to improve the 

control performance using a PSO algorithm for 

PID controller tuning. The most important 

feature of this algorithm includes high 

performance in searching the solution space, 

flexibility and the ability to avoid local 

optimums. Unlike single-trajectory methods, 

this method searches the solution space 

globally; therefore, it is less likely to get 

trapped in local optimums. Testing of the 

quality control process is accomplished in 

simulation environment of MATLAB software 

using Simulink and Sim-mechanics toolboxes 

on a nonlinear musculoskeletal model. In 

conclusion, the responses show that the PSO-

PID controller has much faster response than 

the classical one. The classical PID values are 

good for providing the starting population of 

the PSO. Also, there are many steps beside trial 

and error in getting the PID values before it can 

be narrowed down in getting close to the 

“optimized” values. An optimized algorithm is 

implemented in the system to see and study 

how the system response. However, the PSO-

PID controller is much better in terms of the 

rise time and the settling time than the classical 

PID, which has no overshoot, although it 

suffers in terms of rising time and settling time. 

With respect to the computational time, it is 
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noticed that the classical PID takes a longer 

time to reach its peak as compared to the PSO-

PID controller. The controller with coefficients 

is tuned for a desired angle and is tested for a 

wide range of set points. The results are great 

for a wider range in PSO-PID than the classical 

PID. Generally, meta-heuristic algorithms 

based on particle collections are a type of 

random search on the basis of population. The 

first and most important advantage of these 

algorithms is that they are inherently parallel 

and they can examine search space in different 

directions. Parallel examination under spaces 

causes space searching head to the areas in 

which statistical average of the objective 

function is high, and the presence of absolute 

optimum point is more possible. This is 

because, unlike one-way methods, the solution 

space is searched thoroughly and it is unlikely 

possible to be caught in a local optimum point. 
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