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Abstract

Functional electrical stimulation is the most commonly used system for
restoring function after spinal cord injury. In this study, a model consists
of a joint, two links with one degree of freedom, and two muscles as
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Online: 29/07/2017 flexor and extensor of the joint, which simulated in MATLAB using
Sim-Mechanics and Simulink Toolboxes, is used. The muscle model is
Keywords: based on Zajac musculotendon actuator and composed of a nonlinear

recruitment curve, a nonlinear activation-frequency relationship,
calcium dynamics, fatigue/recovery model, and an additional constant
time delay, force -length and force-velocity factors. A classic controller
for regulating the elbow joint angle; a Proportional- Integral- Derivative
(PID) controller, is used. First, the PID coefficients are tuned using trial
and error method, and then a particle swarm optimization (PSO)
algorithm was used to optimize them. The important features of this
algorithm include flexibility, simplicity, short solution time, and the
ability to avoid local optimums. This PSO-PID controller uses the PSO
algorithm to get the required pulse width for stimulating the biceps to
reach the elbow joint to the desired angle. The fitness function is defined
as sum square of error. The results of PSO -PID controller show the
faster response for reaching the range of the set point than the PID
controller tuned by trial and error. However, the PSO -PID is much
better in terms of the rise time and the settling time, although the PID
tuned by trial and error has no overshoot. The time to reach the zero
steady state error is half in PSO -PID in comparison to PID tuned by
trial and error.

Functional electrical
stimulation (FES),

PID controller,

Particle swarm optimization
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Transverse plane.

1. Introduction restore paralyzed motor functions caused by

SCI [1, 2]. FES artificially induces short

Individuals with C5/C6 level spinal cord injury
(SCI) lose voluntary control of almost all
muscles of the wupper extremity. A
neuroprosthetic ~ system like  Functional
Electrical Stimulation (FES) can be used to
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electrical pulses to generate muscle contraction.
FES can also be used to induce joint movement
by stimulating the flexor and/or extensor
muscles of the joint. Each joint is actuated by at
least two muscle groups, flexor muscles, and
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extensor muscles. Moreover, the maximum
force that can be exerted by a muscle is a
function of its length and the rate of change of
its length, both of which can vary with joint
angle. The tension produced in electrically
stimulated muscle depends on the intensity and
frequency of stimulation. The stimulation
intensity is a function of the total charge
transferred to the muscle, which depends on the
pulse amplitude, duration, and frequency as
well as the shape of the pulse train. The
resulting torque about the joint that is actuated
by the muscle depends on the tension in the
flexor and extensor muscles as well as factors
such as the biomechanics of the joint. The angle
of a joint, or, alternatively, the torque produced
about a joint, can be regulated by varying the
tension produced in the flexor and extensor
muscles of the joint. Consequently, the joint
angle or joint torque can be controlled by
modulating the pulse amplitude, pulse duration
or frequency of stimulation. Typically either the
pulse duration or the amplitude of stimulation is
controlled [3-5].

In this paper, it is proposed to use a
proportional-integral-derivative (PID) controller
for regulating elbow angle in a negative
feedback loop to compensate the error between
the desired angle and the real one; and then
optimize the PID parameters using a particle
swarm optimization (PSO) algorithm. The
controller is based on a nonlinear
musculoskeletal model of the elbow joint’s
response to electrical stimulation of the biceps.
It should be noted that the value of coefficients
PID controller is considered as the objective
function of PSO algorithm.

2.The model

2. 1.The musculoskeletal model

The musculoskeletal model that is used in this
study, is a two-dimensional model of the arm,
in the Transverse plane. It includes two muscles
and one degree of freedom (elbow flexion-
extension). The range of the elbow angle is
from 0 to 160° [6]. The body segment and joint
parameters for the model were obtained from
cadaver studies by Zatsiorsky [7]. These
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parameters include the position of joint centers,
inertia and mass parameters for body segments.
The muscles concerned here are biceps and
triceps, a pair of antagonist’s muscles
functioning as flexor and extensor of the elbow
joint. The biceps has two heads; long and short
heads. The triceps muscle group has three
heads: lateral, medial and long heads. As it is
focused on single joint movement control in a
2D plane, only uni articular muscles of elbow
joint would be considered. Therefore, biceps
long head (LH) and triceps lateral head (LtH)
are selected for FES control. The simplified
musculoskeletal model is illustrated in Fig. 1

[8].
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Fig. 1. Left graph is the physiological model of the
elbow joint. Right graph is the simplified
musculoskeletal model of the elbow joint [8].

2. 2.The muscle model

The muscle model is based on Zajac musculo-
tendon actuator (Fig. 2) which accounts for the
static and dynamic properties of both muscle
and tendon. In this model, the muscle response
to stimulation signal is composed of two parts:
activation dynamics, and contraction dynamics

[9].
2. 2. 1. Activation dynamics

When the muscle is stimulated by the electrical
pulses, there is a dynamic process for the
muscle to generate the force. This electrical
characteristic of the muscle is named as
activation dynamics [8-10]. Muscle activation
is composed of the effect of spatial and
temporal summation by a nonlinear recruitment
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curve, a nonlinear activation-frequency
relationship, and calcium dynamics. A

fatigue/recovery model and an additional
constant time delay have been incorporated

(Fig. 3).
2. 2. 2. Muscle recruitment curve

It can be modeled by a piecewise function with
two values: a threshold pulse width (recruit
deadband), and a saturation pulse width. The
pulse width of the electrical pulse is defined as
z, the normalized muscle recruitment curve

a, can be described in the following way:

0 z<PW,,
1
r= PW_, — PW,, (z- PWthr) PWsat <z< PWthr
1 z>PW,,
(1)

2. 2. 3 Frequency characteristic

When the frequency of stimulation pulse varies,
it also affects the force produced by the muscle.
This effect is defined by:
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q(f) =

where, ¢ is the characteristic factor of the
stimulation frequency.

2. 2. 4. Calcium dynamics

The muscle cannot be activated and relaxed
simultaneously, and there exists a time delay. It
can be modeled as a first order differential
equation.

a

i(u2 —ua)+i(u—a)
z-ad

@)

ac

where, a is the muscle activation without
fatigue, u=a,q,z,. is the activation time
constant and 7., is the de-activation time
constant.
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Fig. 2. Block diagram of muscle model based on Zajac muscle - tendon actuator [9].
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Fig. 3. Block diagram of the activation dynamics.
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2.2.5. Muscle fatigue

When stimulating the muscle electrically, the
force generated by the muscle drops as the time
increases. This phenomenon is due to muscle
fatigue. It depends on the activation level, a,
and frequency, f, of the stimulation.

o _ (P~ P2A(T) | (- p)A-3A(F))

dt T fat Trec

A(F) =1—ﬂ+ﬁ(1£0)2 5)

where, P is the fatigue, 7, is the fatigue time
constant, .. is the recovery time constant,

P, is the minimum fitness, 1 is the frequency

factor on fatigue, and f is the shaping factor.
2.2.6. Contraction dynamics

Muscle contraction property is derived from the
mechanical structure of the muscle (Fig. 4).
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Fig. 4. Block diagram of the contraction dynamics

2.2.7. Force-length factor

A Gaussian-like function is used to model the
relationship between the muscle force and
length.

f, =exp{—((' _1)j } (6)
&

where, f,is a normalized factor that describes

the relationship between the muscle force and
muscle length, | is the normalized muscle
length with respect to the optimal muscle
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. The muscle active force
opt

length: | = Iml
strongly depends on the muscle lengthl_ . The

peak force F, occurs at the optimal muscle
length 1, .

2. 2. 8. Force-velocity factor

The muscle velocity also has an effect on the
muscle force, and the factor f, is used to
describe this relationship.

f, =0.54tan(5.69v +0.51)+0.745 7)

where, v is the normalized muscle velocity with
respect to the maximum  contraction

(shortening) velocity v, of the muscle:
V=VV . However, the muscle length Im
Vmax

and muscle velocity v, are very difficult to be

measured directly during real experiment. From
a macroscopic point of view, it can be
calculated by the joint angle and angular
velocity. The relationship is defined as:

Im = r(g_gr) (8)
v, =ro )
where, 6 and 9 are the elbow joint angle and
angular velocity, respectively. @, is the rest

angle, and r is the muscle moment arm. Then,
the force F produced by a muscle is defined as

the product of maximum muscle force F
with the dimensionless quantities f, , f

\

anda,,
F=F., xfxf, xa, (10)

where, a,,is the muscle activation with fatigue,

a. . =a

m p*
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2. 2. 9. Passive torque

The passive torque is derived from the passive
element in the muscle model. For the elbow
joint, it is modeled as:

%,

T, =-0.20-7.8x10"" sgn(H—%) exp

2

(11)
where, sgn() is the signum function specifying
the sign of its argument [11, 12].

ﬁ@—ﬂ

3. PSO algorithm

PSO is a heuristic global optimization method
put forward originally by Doctor Kennedy and
Eberhart in 1995 [13, 14]. It is developed from
swarm intelligence and is based on the research
of bird and fish flock movement behavior.
While searching for food, the birds are either
scattered or go together before they locate the
place where they can find the food. While the
birds are searching for food from one place to
another, there is always a bird that can smell the
food very well, that is, the bird is perceptible of
the place where the food can be found, having
the better food resource information. Because
they are transmitting the information, especially
the good information at any time while
searching the food from one place to another,
conduced by the good information, the birds
will eventually flock to the place where food
can be found. As far as PSO algorithm is
concerned, solution swarm is compared to the
bird swarm, the birds’ moving from one place
to another is equal to the development of the
solution swarm, good information is equal to
the most optimist solution, and the food
resource is equal to the most optimist solution
during the whole course [15, 16]. The most
optimist solution can be worked out in PSO
algorithm by the cooperation of each individual.
The particle without quality and volume serves
as each individual, and the simple behavioral
pattern is regulated for each particle to show the
complexity of the whole particle swarm. In the
basic PSO algorithm, particle swarm consists of

[I3 2]

n” particles, and the position of each particle
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stands for the potential solution in d-
dimensional space. The particles change its
condition according to the following three
principles:

1) to keep its inertia

2) to change the condition according to its most
optimist position

3) to change the condition according to the
swarm’s most optimist position.

The position of each particle in the swarm is
affected both by the most optimist position
during its movement (individual experience)
and the position of the most optimist particle in
its surrounding (near experience). When the
whole particle swarm is surrounding the
particle, the most optimist position of the
surrounding is equal to the one of the whole
most optimist particle; this algorithm is called
the whole PSO. If the narrow surrounding is
used in the algorithm, this algorithm is called
the partial PSO. Each particle can be shown by
its current speed and position, the most optimist
position of each individual and the most
optimist position of the surrounding. In the
partial PSO, the speed and position of each
particle change according to the following
equality [17, 18]:

K+l k K k K k k K
Vig- =g +Ci1" (Ploestig = Xia) +Caly (Posesti — i)

(12)
Xilf;l = Xilfj + Vilfj+1 (13)

There are three main stages of a PSO
algorithm, these are known as inertia weights,
convergence factor, and selection.

3.1. Inertia weights

Inertia weights are put forward by some
researchers [19, 20]. An Inertia weight @ is a
proportional agent that is related to the speed of
last time. The influence that the last speed has
on the current speed can be controlled by inertia
weights. The bigger the w is, the bigger the
PSO’s searching ability for the whole is; and
the smaller the @ is, the bigger the PSO’s
searching ability for the partial is. In this article,
o is equal to 1. Experimental results show that
PSO has the biggest speed of convergence
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when @ is between 0.8 and 1.2. While
experimenting, @ is confined from 0.9 to 0.4
according to the linear decrease, which makes
PSO search for the bigger space at the
beginning and locate the position quickly where
there is the most optimist solution. As @ is
decreasing, the speed of the particle is also
slowing down to search for the delicate partial.
The method quickens the speed of the
convergence, and the function of the PSO is
improved. When the problem that is to be
solved is very complex, this method makes
PSO’s searching ability for the whole at the
later period after several generations are not
adequate, the most optimist solution cannot be
found, so the inertia weights can be used to
work out the problem [21].

3.2. Increase convergence factor

A PSO algorithm with convergence agents is
introduced in references [22, 23], and the
following is the formula for its position ( y )
changing:

2

Z:
—2+¢? — 44

¢ is called the convergence factor,¢ =c, +C,>
4. Generally, ¢ isequal to 4.1,s0 y isequal to

0.729.

The experimental result shows that the
convergence speed in the PSO algorithm with
the convergence agent compared with the PSO
algorithm with inertia weights, is much quicker.

In fact, when the proper @ , ¢, and C, is

decided, the two calculation methods are
identical. So, the PSO algorithm with
convergence agent can be regarded as a special
example of the PSO algorithm with inertia
weights. Meanwhile, the properly selected
parameters in the algorithms can improve the
function of the methods.

(14)

3 .3. Selection

The compound PSO put forward by Angeline is
based on the basic mechanism and the selection
mechanism created during the development of
the computers [24]. Due to POS’s depending on
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P yeiand Py, during its searching, the area to

be searched is confined greatly. The
introduction of the selection mechanism solves
the problem gradually. The test result shows
although selection has a better effect than basic
PSO in the most tested functions, the result is
less satisfying as far as the function "Griewank"
is concerned. As a result, this method improve
PSO’s searching ability for the partial,
meanwhile, it makes the searching for the
whole area less powerful.

Set Initial Parameters

v

Generate and Evaluate Initial Particles

v

i=1

v

Select ‘i’ Particle | g
-

v

Move the Particle with its Velocity

v

Fitness Evaluation for Particle

¢ i=i+1

Obtain Best Local and Global Position

v

Calculate New Searching Direction

Are All the
Individuals Selected?
YES
Convergence
Condition Satisfied?

YES

v

Fig. 5. PSO algorithm process flowchart [19]
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4. Hand control in the transverse plane

This section examines the control flexion and
extension movements of the elbow in the
Transverse plane. Then coordinates of the
model is defined in the Transverse plane. The
authors want to the PID controllers to control
flexion and extension movements of the hand to
do it. In transverse plane, the path feed-forward
control is not used because based on the
available experiences, the authors conclude that
the addition of this path to feedback, not only
does not improve the system but it
causes the system to be weaker. In Transverse
plane, dealing with the gravity in the model is
added to the controlling. The feedback path in
control system is for reaching to desired range,
feed-forward control can hold the arm in the
desired angle. But to control the Transverse
plane, only the PID controllers are used in the
feedback path. Moreover, to have a better
vision of correct movement in the Transverse
plane, data model are applied to a model
available in opensim software which provides
the desired movement. One of the activities of
daily living (ADL) is stimulated in MATLAB
software by modeling 2 links, 2 joints and 7
muscles. The kinematic results were recorded
of this model in MATLAB and then processed
and applied to a model in opensim software.
The results of this special task are shown in Fig.

(6).

Fig. 6. Observation of arm movement in Transverse
plane and application of the data record in the
simulink model and using a kinematic model for
opensim software.

4.1. The PID controller in the transverse plane

In this study, a classic controller is used to
regulate the elbow angle; a proportional-
integral- derivative controller. The proportional
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controller output uses a ‘proportion’ of the
system error to control the system. However,
this introduces an offset error into the system.
The integral controller output is proportional to
the amount of time. The integral action removes
the offset introduced by the proportional control
but it introduces a phase lag into the system.
The derivative controller output is proportional
to the rate of change of the error. Derivative
control is used to reduce/eliminate overshoot
and introduce a phase lead action that removes
the phase lag introduced by the integral action.
Three types of control are combined together to
form a continuous PID controller (Fig. 7) with
the transfer function as follows:

Kps® +Kos+K,
s

CPID (S) = (15)

So the PID controller generates muscle
stimulations that are proportional to the errors
in joint angles and their time derivatives and
time-integrals. The controller is placed in a
negative feedback loop to compensate the error
between the desired elbow angle and the real
one.

[+
[+ PW Angle :l

Add Musculosieletal Model | RealAngle

SetPoint

Derivative Derivativel

Fig. 7. Block diagram of Proportional- Derivative-
Integral control of the musculoskeletal model with
set point of 80 degrees.

4. 2. Optimizing PID controller using PSO
algorithm

The PSO method is based on swarm
intelligence. The research on it is just at the
beginning. Apart from the PSO and the
simulated annealing (SA) approach, the POS
has no systematical calculation method and it
has no definite mathematic foundation. The
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research on PSO concerns mainly the
mathematic foundation and application research
[25, 26]. The mathematic foundation includes
the mechanical principle of PSO itself, the
proof of its convergence, and robustness and
etc. So it expresses the advantages of PSO
algorithm as follows:

1) PSO is based on the intelligence. It can be
applied to both scientific research and
engineering use.

2) PSO have no overlapping and mutation
calculation. The search can be carried out by
the speed of the particle. During the
development of several generations, only the
most optimist particle can transmit information
onto the other particles, and the speed of the
researching is very fast.

3) The calculation in PSO is very simple.
Compared with the other developing
calculations, it occupies the bigger optimization
ability and it can be completed easily.

4) PSO adopts the real number code, and it is
decided directly by the solution. The number of
the dimension is equal to the constant of the
solution.

The PID controller parameters are firstly
identified by trial and error and then optimized
using a PSO algorithm. The initial guess of the
optimization is derived by adding a uniform
random number in a range of [0, 1] to the
coefficients tuned by trial and error. Then a
further adjustment is performed with a PSO
algorithm. The PSO-PID controller uses PSO
algorithm to get the required pulse width for
stimulating the biceps to reach the elbow joint
to the desired angle [27].

As shown in Fig. 2, new theta (elbow angle)
can be calculated using each block formula. It is
already known the relation between the error
(as the input of PID controller) and controller’s
output as the pulse width for stimulating the
muscle. In this section, the parameters used in
PSO algorithm are explained. One of the
important steps in PSO is the determination of
population number. There is no fast and thumb
rule with regards to which is the best method to
adopt. For a long time, the decision on the
population size is based on trial and error. In
this project, an initial population of 80 is used
since there are three variable parameters. The
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convergence criterion of a PSO algorithm is a
user-specified condition. PSO wuses four
different criteria to determine when to stop the
solver. Another criterion is the maximum limit

of velocity. vl and x! stand separately for

the speed of the particle "i" at its "k" times and

the d-dimension quantity of its position;
PLbestikd represents the d-dimension quantity of
the individual "i" at its most optimist position at
its “k” times, respectively. PGbestZ is the d-
dimension quantity of the swarm at its most
optimist position. In order to avoid particle
being far away from the searching space, the
speed of the particle created at its each direction
is confined between—v, .., andv, . . If the

number of v, .. is too big, the solution is far

from the best, if the number of v, . is too

small, the solution is the local optimism.
Finally, max limit of velocity value is used
equal to 0.1. The fitness (objective) function is
used to provide a measure of how individuals
are performed in the problem domain. In the
case of minimizing problem, the fittest
individuals have the lowest numerical value of
the associated objective function. This raw
measure of fitness is only used as an
intermediate stage in determining the relative

performance of individuals in a PSO. ¢, and

C, is other criterion that represents the speeding

figure, regulating the length when flying to the
most particle of the whole swarm and to the
most optimist individual particle. If the figure is
too small, the particle is probably far away from
the target field. But if the figure is too big, the
particle may fly to the target field suddenly or
fly beyond the target field. The proper figures
forc, andcC, control the speed of the particle’s
flying and the solution is not the partial

optimism. In this article, ¢, equals to C, and

they equal to 2 and r, and r, are random

numbers between (0-1). Moreover, weight
parameter is equal to 1. Another main operator
is the selection. Griewank selection is chosen
by the authors. Griewank selection has a better
effect than basic PSO in the most tested
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functions. As a result, this method improves
PSQO’s searching ability for the partial. It creates
the searching for the entire domain less
powerful [28].

5. Results and discussion

In this section, the PID feedback control is
primarily used to control the movement of
flexion and extension in the plane Transverse
control use. For flexion movement, initial angle
and angle goal on 10 to 80 degrees, respectively
and such as control in the Transverse plane, the
controller outputs are separated into positive
and negative. The positive part of the pulse
width applied to the biceps muscle and the
negative part, with positive sign applied to
triceps muscle. The controller coefficients are
set by trial and error, and then a PSO algorithm
is used to optimize the coefficient.

K, =3, K, =4,

| K, =02

Then, the result of PID control for flexion
movement (from 10 to 80 degrees) in the
Transverse plane is in two cases of:

A) set by trial and error

B) optimized by PSO algorithm.

which are provided in Fig. 8. The angle of the
system output is represented in Fig. 8(a). It
shows changing the angle of the elbow angle
from 10 degrees to the desired angle of 80
degrees. Figure 8(b) provides the pulse width
controller output (during 20 seconds).

The results obtained from controller response
are compared:

The rise time and settling time were measured
in the state (a) were 1.01 and 2.05, respectively,
while in (b) they were 0.24 and 0.41. The
overshoot and steady state error in (a) were
equal to zero but in (b) the amount of overshoot
was equal to 0.08.

Considering a very small overshoot and steady
state error in the controller which is optimized
by PSO algorithm, the conveying speed of the
elbow angle from 10 to 80 degrees would be
much faster.
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PID Control of Flexion of E Ibow Joint in Transverse Plane
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Fig. 8. PID controller to move the elbow flexion in
the Transverse plane with coefficients of (a) trial and
error, and (b) optimized with PSO algorithm. In A)
elbow angles were compared. In B) pulse width
were compared.

6. Conclusions

The aim of the present paper is to improve the
control performance using a PSO algorithm for
PID controller tuning. The most important
feature of this algorithm includes high
performance in searching the solution space,
flexibility and the ability to avoid local
optimums. Unlike single-trajectory methods,
this method searches the solution space
globally; therefore, it is less likely to get
trapped in local optimums. Testing of the
quality control process is accomplished in
simulation environment of MATLAB software
using Simulink and Sim-mechanics toolboxes
on a nonlinear musculoskeletal model. In
conclusion, the responses show that the PSO-
PID controller has much faster response than
the classical one. The classical PID values are
good for providing the starting population of
the PSO. Also, there are many steps beside trial
and error in getting the PID values before it can
be narrowed down in getting close to the
“optimized” values. An optimized algorithm is
implemented in the system to see and study
how the system response. However, the PSO-
PID controller is much better in terms of the
rise time and the settling time than the classical
PID, which has no overshoot, although it
suffers in terms of rising time and settling time.
With respect to the computational time, it is
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noticed that the classical PID takes a longer
time to reach its peak as compared to the PSO-
PID controller. The controller with coefficients
is tuned for a desired angle and is tested for a
wide range of set points. The results are great
for a wider range in PSO-PID than the classical
PID. Generally, meta-heuristic algorithms
based on particle collections are a type of
random search on the basis of population. The
first and most important advantage of these
algorithms is that they are inherently parallel
and they can examine search space in different
directions. Parallel examination under spaces
causes space searching head to the areas in
which statistical average of the objective
function is high, and the presence of absolute
optimum point is more possible. This is
because, unlike one-way methods, the solution
space is searched thoroughly and it is unlikely
possible to be caught in a local optimum point.
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