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Nomenclature 

,u w : Velocity components in x and z

direction respectively ( /m s ) 

x     : Distance along the surface ( m ) 

z     : Distance normal to the surface ( m ) 

r     : Radial velocity 

 : Density of the fluid (
3/Kg m ) 

 : Electrical conductivity ( /S m )

v : Kinematic viscosity (
2 /m s ) 

 : Ratio of the effective heat capacity

 : Thermal diffusivity

* : Stefan-Boltzmann constant 

*k  : Mean absorption coefficient 

pc : Specific heat at constant pressure 

BD : Brownian motion coefficient (
2 /m s ) 

TD : Thermophoretic diffusion coefficient

T     : Temperature of the fluid ( K ) 

mT   : Mean fluid temperature 

C    : Concentration of the fluid 

,w wT C : Temperature and concentration at 

lower disk 
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,h hT C : Temperature and concentration at upper 

disk 

p     : Pressure  

rCf
 
: Skin friction coefficient 

Nur : Reduced Nusselt number 

Shr  : Reduced Sherwood number 

Rer  : Local squeeze Reynolds number 

S      : Squeeze number 

Pr    : Prandtl number 

Le    : Lewis number 

M    : Hartmann parameter 

Nt    : Thermophoresis parameter 

Nb   : Brownian motion parameter 

A     : Suction/injection parameter 

     : Dimensionless velocity slip parameter 

      : Dimensionless temperature slip                  

           parameter 

 

1. Introduction 

 

In nature, a non-Newtonian fluid acts as an 

elastic solid, i.e. the flow does not occur with 

small shear stress. Casson fluid is one of the non-

Newtonian fluids. It is first invented by Casson 

in 1959. It is based on the structure of liquid 

phase and interactive behaviour of solid of a two-

phase suspension. Some examples of Casson 

fluid are Jelly, honey, tomato sauce and 

concentrated fruit juices. Human blood can also 

be treated as a Casson fluid in the presence of 

several substances such as fibrinogen, globulin 

in aqueous base plasma, protein, and human red 

blood cells. Squeezing flows are generated by 

natural stresses or vertical velocities of the 

moving boundary layer. The practical examples 

of squeezing flow are compression, polymer 

processing, and injection molding. The system 

of lubrication can also be demonstrated by 

squeezing flow. By considering the lubrication, 

an approximation on squeezing flow was 

examined by Stefan [1]. The experimental and 

theoretical studies of squeezing flow have been 

led by many researchers [2-6]. Duwairi et al. [7] 

and Khan et al. [8] explained the effects of heat 

transfer on squeezing flow of viscous nanofluid. 

The effect of magnetohydrodynamic (MHD) 

Casson fluid flow in a lateral direction past linear 

stretching sheet was explained by Nadeem et al. 

[9].  

Raju et al. [10] discussed the effects of nonlinear 

thermal radiation on Jeffery fluid in the presence 

of non-uniform heat sources/sink. The 

characteristics of heat and mass transfer in a 

viscous fluid with squeezing flow between the 

parallel plates were explained by Mustafa et al. 

[11]. Islam et al. [12] investigated the 

approximation solution on an MHD flow of 

squeezing fluid. The MHD three-dimensional 

steady flow of a Casson nanofluid past a 

stretching sheet was analysed by Nadeem et al. 

[13]. The effect of magnetic field on heat transfer 

analysis of nanofluid between parallel plates was 

explained by Hatami et al. [14]. Domairry and 

Aziz [15] investigated the MHD squeeze flow 

between the two parallel disks by the homotopy 

perturbation method. The heat transfer and 

stagnation-point flow of a Casson fluid in the 

region towards a stretching sheet was 

investigated by Mustafa et al. [16]. Rashidi et al. 

[17] explained the effects of radiation and 

buoyancy on heat and mass transfer for an MHD 

flow on a vertical stretching sheet. The 

hydromagnetic flow of a partial slip over a 

stretching sheet in the presence of thermal 

radiation was studied by Abdul Hakeem et al. 

[18]. Sheikholeslami and Ganji [19] discussed 

the effects of thermal radiation on an unsteady 

nanofluid flow and heat transfer in the presence 

of a magnetic field. MHD thermosolutal 

nanofluid flow over a vertical plate was 

investigated by Sulochana et al. [20]. 

Sheikholeslami et al. [21] explained the unsteady 

nanofluid flow and heat transfer in the presence 

of time-dependent magnetic field between 

parallel. Unsteady MHD flow in the presence of 

nonlinear thermal radiation between the parallel 

plates was analysed by Sathish Kumar et al. [22]. 

Very recently, the researchers [23-26] 

investigated the heat transfer nature of the non-

Newtonian fluids by considering the various 

geometries.  

To the author’s knowledge, no studies have been 

reported on the effect of nonlinear thermal 

radiation on the unsteady magnetohydrodynamic 

slip flow of Casson fluid between parallel disks 

in the presence of thermophoresis and Brownian 
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motion effects. This study is useful to analyze 

the effect of non-dimensional governing 

parameters, namely magnetic field, Casson, 

thermophoresis, Brownian motion, radiation, 

unsteadiness, and slip parameters on velocity, 

temperature, and concentration fields. Which 

leads to control the heat and mass transfer rates 

of the flow between discs? 

 

2. Mathematical formulation  

 

Consider an electrically conducting 

axisymmetric flow of a Casson fluid between 

two parallel disks with a non-uniform distance 

 ( ) 1h t H t  , where   is the 

characteristic parameter. Lower disk locates at 

0z  and upper disk ( ( )z h t ) approaches the 

lower disk at the velocity ( )
dh

v t
dt

  until they 

touch each other. A uniform magnetic field 
1

2
0( ) (1 )B t B t



   is applied to the flow as 

shown in Fig. 1. Nonlinear thermal radiation 

along with thermophoresis and Brownian motion 

effects are taken into account. 

 
Fig. 1. Physical model of the problem. 

 

 As per the above assumption, the governing 

equations are as follows: 
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The boundary conditions for the problem are: 
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To solve the governing Eqs. (1) – (5) the 

following dimensionless quantities are 

introduced: 
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                  (7) 

 

By using Eq. (7), the continuity of Eq. (1) is 

satisfied automatically and then Eqs. (2-5) are 

reduced to:  
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            (8)                                           
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Here, 
2

H
S

v


  is the squeeze number, 

0M HB



  is the Hartmann parameter, Pr

v


  

is the Prandtl number, 

B

v
Le

D
 is the Lewis 

number,  B w hD C C
Nb

v

 
  is the Brownian 

motion parameter,  T w h

m

D T T
Nt

vT

 
  is the 

thermophoresis parameter, 0w
A

H
  is the 

suction/injection parameter, 1

1H t








 is the 

dimensionless velocity slip parameter and 

1

1H t








 is the dimensionless temperature 

slip parameter. 

The characteristics of flow, heat and mass 

transfer are skin friction coefficient, reduced 

Nusselt and Sherwood numbers, respectively 

which are defined by: 

 

 ' 1Nur   where 1Nur tNu  ,          (13) 

 '' 1frC f where
2

2

1 Rer
fr

H t
C C

r


 ,      (14) 

 ' 1Shr   where 1Shr t Sh  ,     (15) 

where Re
2

r

r H

v


  is the local squeeze Reynolds 

number. 

 

3. Numerical solution 

 

The non-linear ordinary differential Eqs. (8-11) 

with boundary conditions (12) are solved using 

the Runge–Kutta and Newton’s methods. A set 

of nonlinear ordinary differential equations are 

of third order in f , g , second order in   and   

are first reduced into a system of simultaneous 

ordinary equations. In order to solve this system 

using Runge-Kutta and Newton’s method, three 

more missed initial conditions are required. 

However, the values of  f  ,  g  ,    , 

    are known when   . These end 

conditions are used to obtain unknown initial 

conditions at 0   using shooting technique. In 

shooting method, the boundary value problem is 

reduced to an initial value problem by assuming 

initial values. The calculated boundary values 

have to be matched with the real boundary 

values. Using trial and error or some scientific 

approaches, it can be attempted to get as close to 

the boundary value as possible. The most 

essential step of this method is to choose the 

appropriate finite value for far field boundary 

condition. In this study, infinity condition is 

taken at a large but finite value of   where no 

considerable variations in velocity, temperature 

and so on occur. Bulk computations are run out 

with the value at max 6  , which is sufficient to 

achieve the far field boundary conditions 

asymptotically for all values of the parameters 

considered.  

4. Results and discussion  

 

For numerical computations, the non-

dimensional parameter values are chosen as 

follows:  

 

0.5,  Pr 6, 0.5,A 2,Nb Nt   

1, 1.1, 0.1wLe S M R          . 

 

Throughout the analysis, these values are kept 

common except the varied values which are 

displayed in the respective graphs. In this 
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discussion, the effects of pertinent parameter on 

the blowing case ( 0A ) are investigated.  

Figs. 2 and 3 depict the behaviour of thermal 

radiation parameter on temperature and 

concentration profiles, respectively. 

Temperature profiles increases with increasing 

radiation parameter values while concentration 

profiles show opposite behaviour. Generally, 

increasing radiation parameter values enhances 

the temperature near the boundary; this causes 

concentration particle to move away from the 

surface.  

 
Fig. 2. The effect of R on temperature profile. 

 

 
Fig. 3. The effect of R on concentration profile. 

 

Figs. 4-6 show the behaviour of squeeze number 

on concentration, temperature, and velocity 

profiles. Decreasing in temperature profile is 

observed with increasing the squeeze number 

values. But velocity and concentration profiles 

enhance with increasing values of squeeze 

number. Generally, increasing the squeeze 

number value can be associated with the reduced 

kinematic viscosity and it enhances the distance 

between the plates and increase the speed at 

which the direction of the plate moves.  

 

Fig. 4. The effect of S on concentration profile. 

 

Fig. 5. The effect of S on temperature profile. 

 

Fig. 6. The effect of S on velocity profile. 

 

Figures 7-9 illustrate the behavior of 

concentration, temperature, and velocity profiles 

as a function of increasing value of Casson fluid 

parameter. It is observed a rise in the velocity 

profiles for increasing value of Casson fluid 
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parameter. Temperature and concentration 

profiles show a reverse trend to above. 

Physically, rising values of Casson parameter 

develop the viscous forces. These forces have a 

tendency to decline the concentration and 

thermal boundary layer.  

Fig. 10 depicts the effect of Brownian motion 

parameter on concentration profile. It is evident 

that increasing values of Brownian motion 

parameter decreases the concentration field. 

Generally, Brownian motion helps to heat the 

fluid in the boundary layer and instantaneously 

impair particle deposition away from the fluid on 

the surface. The effects of thermophoresis 

parameter on temperature and concentration 

profiles are shown in Figs. 11 and 12. It is 

observed that increasing values of 

thermophoresis parameter enhances the 

temperature and concentration profiles. 

Figs. 13 and 14 demonstrate the effect of 

temperature slip parameter on temperature and 

concentration profiles. It is seen that the 

temperature and concentration fields increase 

with increasing values of slip parameter. The 

effect of velocity slip parameter on velocity, 

temperature, and concentration profile is shown 

in Figs 15-17. It is clear that an increase in the 

velocity enhances the velocity and temperature 

fields and declines the concentration filed. 

Physically, rising the value of slip parameter 

allows more fluid to slip over the surface because 

of which the flow close to the sheet decreases 

and the slip effect towards the free stream is less 

articulated. 

Table 1 shows the effect of non-dimensional 

parameter values on local Nusselt and Sherwood 

numbers. It is evident that rising values of 

thermal radiation, thermophoresis parameter, 

and temperature slip parameter reduces the heat 

and mass transfer rates. However, an opposite 

trend is noticed to above for increasing values of 

unsteadiness parameter, Casson parameter, and 

velocity slip parameter. Interestingly, the effect 

of Brownian motion parameter on the heat 

transfer rate is negligible and it helps to boost the 

mass transfer rate.  

 
Fig. 7. The effect of  on concentration profile. 

 

 
Fig. 8. The effect of  on temperature profile. 

 

 
Fig. 9. The effect of  on velocity profile. 
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Fig. 10. The effect of Nb on concentration profile. 

 

 

Fig. 11. The effect of Nt on concentration profile. 

 

 

Fig. 12. The effect of Nt on temperature profile. 

 
Fig. 13. The effect of  on concentration profile. 

 

 
Fig. 14. The effect of  on temperature profile. 

 

 

Fig. 15. The effect of  on concentration profile. 
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Fig. 16. The effect of  on temperature profile. 

 

 

 

Fig. 17. The effect of  on velocity profile. 

 

Table 1.  Physical parameter values of reduced Nusselt and Sherwood numbers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R  S    Nb 
Nt      '( )   '( )   

0.5        -0.064964  -0.079919  

1        -0.161588  -0.107289  

1.5        -0.268392  -0.119753  

 0.5       -1.010774  -0.156084  

 1       -0.558427  -0.231937  

 1.5       -0.305019  -0.175122  

  0.1      -0.177447  -0.115960  

  0.5      -0.167330  -0.110469  

  1      -0.155513  -0.103869  

   0.2     -0.161588  -0.268223  

   0.4     -0.161588  -0.134112  

   0.6     -0.161588  -0.089408  

    0.2    -0.143121  -0.039022  

    0.4    -0.154956  -0.083074  

    0.6    -0.168763  -0.133151  

     0.01   -0.142288  -0.094843  

     0.05   -0.150270  -0.100001  

     0.1   -0.161588  -0.107289  

      0.01  -0.230797  -0.141072  

      0.03  -0.227844 -0.140046  

      0.05  -0.216398  -0.135215  
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5. Conclusions 

 

The present study deals with the effect of 

nonlinear thermal radiation on unsteady 

magnetohydrodynamic slip flow of Casson fluid 

between parallel disks in the presence of 

thermophoresis and Brownian motion effects. A 

similarity transformation is employed to reduce 

the governing partial differential equations into 

ordinary differential equations. Furthermore, 

Runge-Kutta and Newton’s methods are adopted 

to solve the reduced ordinary differential 

equations. Numerical findings are as follows: 

 Magnetic field parameter regulates the flow 

field. 

 Squeeze number have a tendency to 

enhance the heat and mass transfer rate. 

 Rising values of Casson parameter boosts 

the local Nusselt and Sherwood numbers. 

 Velocity and temperature slip parameters 

regulate the momentum, thermal, and 

concentration boundary layers. 

 Brownian motion and thermophoresis 

parameters control the heat and mass 

transfer rates. 
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