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Abstract

An efficient and accurate analytical solution is provided using the homotopy-
Pade technique for the nonlinear vibration of parametrically excited
cantilever beams. The model is based on the Euler-Bernoulli assumption and
includes third order nonlinear terms arisen from the inertial and curvature
nonlinearities. The Galerkin’s method is used to convert the equation of
motion to a nonlinear ordinary differential equation, which is then solved by
the homotopy analysis method (HAM). An explicit expression is obtained
for the nonlinear frequency amplitude relation. It is found that the proper
value of the so-called auxiliary parameter for the HAM solution is dependent
on the vibration amplitude, making it difficult to rapidly obtain accurate
frequency-amplitude curves using a single value of the auxiliary parameter.
The homotopy-Pade technique remedied this issue by leading to the
approximation that is almost independent of the auxiliary parameter and is
also more accurate than the conventional HAM. Highly accurate results are
found with only third order approximation for a wide range of vibration
amplitudes.

1. Introduction

The vibration of a beam subjected to the
harmonic base excitation is of high importance
because of the wide application of such a
structure in many fields of engineering as
manipulator arms, offshore flexible structures
and space structuresO [1]. Many theoretical and
experimental studies have been performed in
this area since 1971 [2-8]. Because of the
complexity of the governing nonlinear
equations, and the need for rapid estimation of
the amplitude dependent frequencies, numerous
attempts have been made to obtain an accurate
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analytical solution of the problem [1, 6, 7].
Different methods such as the method of
multiple scales and harmonic balance are used
in these studies and are shown to be effective
and accurate. These methods, however, loose
their accuracy as the nonlinearity increases
unless their higher order approximations are
used. This may not be accomplished in a
convenient and systematic manner, and in most
cases requires heavy mathematical
manipulations or numerical treatments to solve
many nonlinear algebraic equations.
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New analytical methods have been introduced
in recent years, which do not depend on the
parameters such as the  Adomian
decomposition, Homotopy Perturbation, He’s
parameter expanding (HPEM), Variational
iteration, Max—Min approach (MMA\), Iteration
perturbation (IPM), and the Homotopy analysis
(HAM) methods [9]. An active research area
has been opened in recent years to demonstrate
the reliability and accuracy of these analytical
methods for different engineering applications.
The HPEM was used by Sedighi and Shirazi
[10] for studying the vibration of a cantilever
beam with nonlinear boundary conditions, and
also by Sedighi et al. [11] for vibrations of a
beam with preload discontinuity. Application of
some of the above mentioned analytical
methods in the nonlinear vibration of beams
was also considered in Refs. [9, 12-14]. In all
of these studies, it has been demonstrated
that the new modern techniques may be very
helpful in providing analytical solutions for
the vibration of structural systems
possessing strong nonlinearities. Among
these methods, the HAM has also been
proved to be easy and accurate for treating
nonlinear vibration problems [15-22]. One of
the main advantages of this method over
many other analytical methods mentioned
above is that the convergence of the series
solution obtained by the method can be
guaranteed using the so-called auxiliary
parameter. It is in fact shown in Ref 0 that
the convergence rate can be considerably
improved by choosing a proper value for the
auxiliary parameter. The proper value of this
auxiliary parameter can be determined by
visually inspecting the so-called h-curves.
However, this may slow down the solution
process in cases that the frequency-response
(backbone) curves are intended to be plotted.
The reason is that the proper value of the
auxiliary parameter may not be the same for
different vibration amplitudes. Hence
although the auxiliary parameter would be
beneficial in terms of controlling the
convergence rate, it may also slow down the
method if the backbone curves are needed to
be plotted. This drawback is shown in the
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present study that can be removed if the
Pade approximant is employed. The
combination of the Pade approximant and the
HAM is used by Liao and Cheung 0 under the
name of the homotopy-Pade technique and is
shown to have a better convergence rate than
the HAM.

Due to the capabilities of the HAM and the
homotopy-Pade technique mentioned above,
they are used in the present study to provide a
convergent analytical solution for the nonlinear
vibration of a parametrically excited beam. The
equation of the motion is based on the Euler-
Bernoulli’s assumption with the order of three
nonlinearity. The solution process is initiated by
discretizing the integro-partial differential
equation of motion using the Galerkin’s
method. The resulted nonlinear ordinary
differential equation is then solved by the HAM
and the homotopy-Pade technique. It is found
that the homotopy-Pade technique has a
superior performance over the HAM since the
corresponding solution has faster convergence
and minimal dependence on the auxiliary
parameter. The results are compared using
numerical solution to show high accuracy and
efficiency of the method for a wide range of
vibration amplitudes. It is worth to mention that
the solution method used in the present study
can, in fact, be used for strongly nonlinear
vibration analysis of any structural systems like
plates or beam assemblies, as long as their
motion can be described by a single mode.
However, in cases that more than one mode is
required to accurately predict the nonlinear
vibration of the system, the method may not
always yield accurate results especially when
the nonlinear interactions occur between the
modes due to internal resonances.

2. Governing equation

Consider a cantilever beam shown in Fig. 1,
with the length, I, the mass per unit length, p

and the flexural rigidity, El , which is attached
at its base, to a rigid mass having a harmonic
motion of frequency Q and amplitude b. The
integro-partial differential equation of motion
that describes the moderately large amplitude



JCARME

vibration of the beam can be written in the
following non-dimensional form [1, 23]:
o°w o*'w o 8\N o 0w o°w

or?  os* s s as(EaT)]

2 OWy7
I dSZLS ) &
2 85 %0 or? '

(0,03 cos(27) - 8, ][(1-5) 2 - 211,

where z=(El/pL)’t, Q,=1’(p/EI"Q,
w=w/l with W being the transverse
deflection, b,=b/l, and s=x/1. Also,

denoting the gravitational constant by g, g, is
defined by g, = g(pl®/El). It is to be noted that

the nonlinear equation of motion of the beam
given in Eqg. (1) are derived in Ref. 0 based on
the generally large deformation of the beam,
which is then simplified to contain only up to
the third-order nonlinear terms. Moreover, since
the beam is not constrained in the axial
direction, the beam is assumed to be
inextensible. The warping, shear deformation
and also the rotary inertial of the cross section
of the beam are also neglected due to the small
thickness of the beam.

Y, w
« b cos(£2t)

Fig. 1. Cantilever beam subjected to base excitation.

In order to solve Eq. (1), the Galerkin’s method
is used at first to convert it to an ordinary
differential equation. The displacement function
used for this purpose corresponds to the exact
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modes of the linear vibration of a cantilever
beam, which is defined as:

@ (s) = cosh(.s) —cos(f;s) +

cosh(5) +0S(A) o
Sinh( ) +sin(g,) CeAs) —sin(AsL - (2)

with g being the ith root of the transcendental
equation, cos(B)cosh(p)+1=0. Assuming that

the motion of the beam is dominated by a single
mode, the single-mode Galerkin’s procedure
may be used for discretization purpose [1]. This
assumption may not be acceptable if the
equations of motion contain quadratic nonlinear
terms [24] or internal resonance occurs between
the modes of the beam. Considering that no
quadratic terms are present in Eg. (1) and also
since it is assumed that the frequencies are not
commensurate (or nearly commensurate) with
each other, the single linear mode may
accurately describe the motion.

Next, introducing the relation, w= g (s)v(z) into
Eq. (1), applying the Galerkin’s procedure and
defining the dimensionless  parameters,
t' =67, =0Q,/20° and u=6v, the following
equation is obtained as [1]:

2

—*Li +[1+2pcos(Rat™)Ju +

2 3)

0
aluw(uz) +a,u’ =0,

where the constant coefficients 6, «,, «, and
p are dependent on the system properties.

3. Solution by HAM

The HAM begins with introducing the
transformation, T = wt”, into Eq. (3) as follows:

2
@* % +[1+2pcos(2T)Ju + )

62
a,0’u =7 U*)+a,u® =0.

The so-called zeroth order deformation
equation is then constructed as 0:
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1-qg)L ;q)—u =ghN o)l B m
(- a)LL#(T;0) —uy (T)] = ahN[4(T; )] ©) Q) =20+ Za Q(q) 0. 10)
where u, is the zeroth order solution, q is the a=0
embedding parameter that varies from 0 to 1,
and h is the auxiliary parameters to be Next, using the definition,
determined later. Also, N is a nonlinear (T q)
operator that is defined for the present problem Up (T) =—+ 5 - and
as follows: LU R P
o ¢(T q) " :%a((i) along with Eq. (7), the
N[4(T; a), Q(0)] = Q0)* ———+ M oo

[1+2p <305(2T)]¢(r Q)+ (6)

400 4(T;0) 5 7 [¢(T:q)2]+az¢(r:q)3,

where Q(q) and ¢(T;q) are unknown mapping
functions that satisfy the following relations:

A0 =u,(T), Q0 =a,

HTD=u). OO =o, )

with o, being the first order solution for the

non-dimensional frequency. L in Eq. (5) is also
the linear operator which is defined as:

L(g) ==+, (8)

6T2

The above linear operator is chosen such that its
homogeneous solution would be in the form of
the functions that appear in the base function of
the solution. For vibration problems with
periodic solution, the base function can be

represented by the series, icn cos(nt) whose

n=1

first term is cos(t). Hence it would be

reasonable to define the linear operator by Eg.
(8), since its homogeneous solution is also
cos(t) .

Taylor’s expansion of the unknown functions,
Q(q) and ¢(T;q) in terms of the embedding

parameter, q, are then obtained as:

"$(T;0) T ©)

#(T:09) = 4(T; 0)+Z e
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following expression can be obtained for » and
u(T) as:

o0
a):a)0+2a)m,
m=1

. (11)
u(T) = Uy () + X u, (7).

Considering the initial condition, u(0)=A and
du

ﬁT:o
taken as:

=0, the zeroth order solution u,(T) is

U, (T) = Acos(T), (12)

which is the solution of the homogeneous linear
equation given in Eqg. (8). The remaining
unknowns, @ ’s and u,’s will be determined
using the higher-Order deformation equations.
These equations can be obtained by
differentiating the zeroth-order deformation
equation m times with respect to q, dividing
the result by m! and finally setting q=0. The
result for the m’th order deformation equation is
as follows:

LU, (M) = 2ol (MI=hHMR U, (M1, (13)

where 7, =0 for m=1 and 4, =1 for m>1
and:

R,[U, ,(8)] = —— o™ *NIg(s:q). 2(a)]|

(m-1)! oqmt

(14)

q=0

Equation (13) with the initial conditions,

u (0):Olum =0, constitute a set of
" dT

T=0
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hierarchical linear equations that should be
successively solved to obtain u,’s. Moreover,

in order to avoid the secular terms in the
solution, all terms at the right-hand side of the
Eqg. (13) that contain cos(T) should be set to

zero. This provides additional algebraic
equations for @, ’s. The first order

approximation of the frequency can then be
obtained as follows:

(3, A” +4p+4)

1
“72 (Aa, +1)

. (15)

The second and third order approximations of
the frequency can also be determined by
obtaining the solution for «, and o, as:

—hA

_ 2 4
= —640a)03 (AZal +1) [15(46110)0 az)azA +

@,

10(—40616004 +daw, +a,0, —4pa, —a, ) A? (16)
+4pw, -4 p] :

1
122880," (A%, +1)
[3h*(64c’w, —464a}’a,m," +
148a,a,” ) —9a,”) A® +6h* (160’ @, +

16 pe’m,* —160a,’ w," — 272, c,00," +

2

168a, pa,w,” +80a,a,," +58a,’ w,’
-7pa,’ -10a,”)A° - 288ha,w,)’ (4o, +
8a,wyw, — ar,) A’ —8h* (=108, 0,° +
112 payw,* +32 p*a,,” +1200,0,)" + 17)
27a,0," -112 payw,” —172 pa,w,” —
32p’a, -12a,0,” -30a,0," +28 pa,
+3a,)A" +192he* (4a,0," +16a,0, o,
—bda,m,” - 8,0, — a0, —20,ww, +
6 pa, +a,)A*-32(27h* pa,* +192c,0," ®
+2h?p*w,? +h?p® —30h* pw,” — 2h’ p?
+3h*p) A* - 768hpa,’ (@, + 2,0, —1) A
-6l440,' w?].
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Equations (16 and 17) contain the auxiliary
parameter, h, which is not yet assigned a value.
This parameter does in fact, have a considerable
influence on the convergence of the solution
and should be determined such that its variation
has a minimal effect on the variation of the
solution. To do this, the so-called h-curves
should be plotted for specific values of system
parameters. Then the proper value for h can be
chosen from the region where the slope of the
@—h curve is near to zero. This, however, may
impose difficulty in plotting the frequency-
amplitude curves, especially when h changes
with A, since the proper value of h will not be
the same for different values of A and thus the
w—h curves should be successively inspected
to determine the proper value of h for each
oscillation amplitude. To avoid this, the Pade
approximant of the HAM solution can be used
by following procedure of the homotopy-Pade
technique. This technique applies the Pade
approximation to the power series solution of
the HAM obtained by Taylor’s series expansion
of the solution in g. The Pade approximation
may be viewed as the generalization of Taylor’s
series, which uses the ratio of two polynomials
to approximate a function (say f) as [25]:

P.(a)
f(q) = 2

@%@
where P.(q) and Q,(q) are polynomial
functions of degrees m and n respectively. This
approximant has usually faster convergence
rates than Taylor’s series. Moreover, in cases
that f is Taylor’s series, its Pade approximant
may considerably accelerate the convergence.
This is also true for the power series expansion
of Q(g) given in Eg. (10), whose [m,n] Pade
approximant can be written as [16]:

D A Ma

Q@) =——. (19)
2B (M)
k=0

where A, and B, may be computed by

different algorithms such as the qd-algorithm
and the algorithm of Gragg [26]. In the present
study, they are obtained by the Maple software.
The embedding parameter q is then set to unity

(18)
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in Eqg. (19) leading to the final solution for @
based on the [m,n] Pade approximant. For the
present problem, the [1, 1] homotopy-Pade for
the third order HAM solution, can be obtained
as follows:

2 20
w=qw,+ “ , (20)
o —w,
the [2, 2] homotopy-Pade approximant

corresponding to the fifth order HAM solution
is also obtained as follows:

- a)l2 (a)3—a)4)+a)1w2(2w3—a)2)—a)23 (21)

o (0, —w,)+ 0, (0, + 0, - 0,)- o
where o,, o, o,, o, and , are given in Egs.
(15-17).

4. Numerical results

Numerical results are presented in this section
for the steady state frequency response of the
beam, using different-order approximations of
the HAM solution and are compared with the
numerical solution. Numerical simulations are
performed by the Maple software, which uses
the Fehlberg fourth-fifth order Runge-Kutta
method (rkf45). The properties of the beam
considered here  are, El =76.29 Ib s,

p=0.2888x10"1Ibs*/in*, 1=35625in and
p =0.014. Moreover, the numerical values of
0, «, a, and B corresponding to these
properties are given in Table 1.

Table 1. Numerical values of the parameters in
Eq.(3) for the beam with EI=76291Ibs,

p=0.2888x10" Ibs* /in* and | =35.625in [1].

Nl\l/ljomdbeer ! 2 3 4
/] 1.8751 4.6941  7.8548  10.99554
a, 1.182 3.4556  8.2535 16.6
a, 55 1.4623 1.189 1.123

6 3.7813 438.3 3670.64  143361.1
0.014 0.014 0.014 0.014

Finding a proper value for the auxiliary
parameter, h, is crucial for accurate prediction
of the response by the HAM. For this purpose,
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the variation of the non-dimensional frequency,
w, corresponding to the first two modes, are
depicted in Figs. 2-3. Results are obtained for
two different values of vibration amplitudes,
A. The best values of h correspond to the
regions where the rate of change of » with h
is zero. These values, however, are not the same
for different amplitudes even when the seventh-
order approximation is used. Similar results are
also obtained for higher modes of vibration
which confirms the necessity of using the
homotopy-Pade technique for obtaining a
unique expression for different vibration
amplitudes.

1.26

o e

1.259

1.258 -1,

3rd order approximation
— — — - bthorder approximation
————— — T7th order approximation

h 3rd order approximation

3 17k i — — — - 5th order approximation
i —-———— 7th order approximation
165!
-
!
16
155 f
Ir
L TR 1 TR 1 TR 1
-0.2 -0.15 -0.1 -0.05 0
h
A=2

Fig. 2. Variation of excitation frequency with
auxiliary parameter h for the first mode.



JCARME

0.846
0.845
0.844
0.843
0.842
0.841

0.84
0.839
0.838
0.837
0.836
0.835
0.834
0.833
0.832
0.831

UALIARE: 5N WY AAS LanL) AR) L

3rd order approximation
— — — — 5thorder approximation
——————— 7th order approximation

PRI ETRVAVEN RSVENAVN IATAVATIN (NANAVATE SYAVATAVEN AVAVATIE AT
175 -15 -125 -1 075 05 -025 0
h

R L4 FLCI S

3 -/
| ! 3rd order approximation
! — — — — 5th order approximation
05 | ==== 7th order approximation
3
1 . . 1 . . 1 .
04 -0.075 -0.05 -0.025 0

h

A=2
Fig. 3. Variation of excitation frequency with
auxiliary parameter h for the second mode.

Next, the accuracy of the analytical solution is
examined in Figs. 4-7 by depicting the
frequency-amplitude curves for the first four
modes of vibration. Analytical results, based on
the HAM, are obtained using the proper values
of h for A=2. The results of the [1, 1]
homotopy-Pade technique and also the [2, 2]
Pade approximant of the fifth order HAM
solution are also included in these figures. It
can be seen that the first order approximation is
adequate for the first mode’s amplitudes smaller
than 0.5. For higher modes, the nonlinearity
seems to become stronger and thus the first
order HAM is only accurate for A<0.3. The
third order approximation is also seen to
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become closer to the numerical solution, even
though that h is chosen based on the @ -h curve
obtained for A=2. Considering the close
agreement of the third order HAM with the
numerical result at A=2, it may be expected
that better result may have been obtained if h is
separately determined for different values of A.
However, this would considerably slow down
the process of obtaining the whole frequency-
amplitude curve. Instead, the homotopy-Pade
technique is used here which is found to have a
minimal dependence on h. In fact, the solution
is found to be varied with h in a narrow region
near h=0. So taking an arbitrarily large value
for h, say h=-10, a unique expression can be
obtained for all values of A. This is evident in
Figs. 4-6, which shows excellent agreements
between the [1, 1] homotopy-Pade and the
numerical result, especially for the first and
fourth modes. Slight discrepancy, however,
exists for the second and third modes when
A>15, which has completely disappeared by
using the [2, 2] homotopy-Pade technique. It
must be mentioned here that the oscillation with
A>1 is strongly nonlinear and the high
accuracy of the solution obtained by the
homotopy-Pade technique for this range of
vibration amplitudes, completely confirm the
significant power of the analytical method.

2 y
12
1st order HAM Y
- — = = 3rd order HAM /s
= = = = [1,1] Pade (with 3rd order HAM) ‘y
—.. === [2,2] Pade (with 5th order HAM) ‘e
151 [ ] Numerical solution , /I.
’
’.
I R
- /’.',
< 1F g
3 %
| Cd
<d
05
b
1.2 14 1.6 1.8
(O]

Fig. 4. Amplitude-frequency curve for the first mode
(h=-0.1 for the third order HAM).
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1st order HAM

1y — — = - 3rd order HAM

L 14 = = = = [1,1] Pade (with 3rd order HAM)
15k ) === -= [2,2] Pade (with 5th order HAM)
[ ] Numerical solution

05

Fig. 5. Frequency-Amplitude curve for the second
mode (h=-0.05 for the third order HAM).

Y
‘T 1st order HAM
H @ — — — - 3rdorder HAM
o \ = = = = [1,1] Pade (with 3rd order HAM)
15\ 'm —=== [2,2] Pade (with 5th order HAM)
n Y [ ] Numerical solution
\
B A
L \ Yy
L \\‘__
< 1F \i\
Y
.
N
- >
~
051 N9
| X
ot I I Ll I I
0.4 05 0.6 0.7 0.8 0.9 1

Fig. 6. Frequency-Amplitude curve for the third
mode (h =-0.03 for the third order HAM).

1st order HAM
- - — = = 3rdorder HAM
- = = = = [1,1] Pade (with 3rd order HAM)
15F ¥ —..=-=.= [2,2] Pade (with 5th order HAM)
* [ ] Numerical solution

\v.
A
W
N
A\
L \
>~
0.5 >
- x>
=~
0. TN INRNENENEN STRNEN AVERTI EAETTE SR SNSRI S

02 03 04 05 06 07 08 09 1
o]

Fig. 7. Frequency-Amplitude curve for the fourth
mode (h =-0.015 for the third order HAM).
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5. Conclusions

The HAM and the homotopy-Pade technique
were used to obtain an accurate and efficient
analytical solution for the nonlinear vibration of
a parametrically excited cantilever beam. An
explicit expression was presented for the third
order approximation of the amplitude-frequency
of the system. It was found that proper values
of the auxiliary parameter, h, change with the
non-dimensional vibration amplitude, A,
making the HAM not suitable for the rapid
depiction of the frequency-amplitude curves.
The homotopy-Pade technique was thus
employed, which besides improving the
convergence rate, gave the solution that was
almost independent of the auxiliary parameter
h. The numerical results were presented for
different modes of vibration, using both the
HAM and homotopy-Pade technique and
compared with the numerical solution. Highly
accurate results were obtained using the [1, 1]
Pade approximant of the third order HAM for
non-dimensional amplitudes smaller than 1.5.
For larger amplitudes up to 2, the [2, 2] Pade
approximant of the fifth order HAM was found
to coincide with the numerical solution,
showing the significant power of the method in
solving oscillatory equations with the strong
nonlinearity.
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