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Abstract

Using differential quadrature method, this study investigated pull-in
instability of beam-type nano-switches under the effects of small-scale and
intermolecular forces including the van der Waals and the Casimir forces. In
these nano-switches, electrostatic forces were served as the driving force, and
von-Karman type nonlinear strain was used to examine nonlinear geometric
effects. To derive nonlinear governing equations as well as the related
boundary conditions for the nano-beam, variation method was used. Besides,
to study the influence of size effect, the nonlocal elasticity theory was
employed and the resulting governing equations were solved using
differential quadrature method. Finally, the pull-in parameters were studied
using the nonlocal theory and the results were compared with the numerical
results of the classical continuum theory as well as experimental results
contained in the references. Results demonstrated that taking into
consideration the von-Karman type nonlinear strain increases the beam
stiffness and hence, the pull-in voltage. Besides, use of the small scale,
compared with the classical theory of elasticity, yields results much closer to
experimental results.

1. Introduction

Micro-electro-mechanical systems (MEMS) is a
process technology used to create small integrated
devices or systems that combine mechanical and
electrical components. They are fabricated through a
mix of integrated circuit manufacturing and micro-
machining process and can range in size from a few
micrometers to millimeters. These devices have the
ability to sense, control and actuate on the micro
scale. Nano-electro-mechanical systems (NEMS)
are structures and mechanisms with nano-
dimensions which serve as nano-switches to convert
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electrical energy into mechanical energy and as
sensors to convert mechanical energy into electrical
energy. The development of such nanostructure in
sciences such as communication, electronics,
medicine, aerospace, military, robotics, chemistry,
and optics has resulted in new achievements. On the
other hand, the need to investigate and predict the
mechanical behavior of these structures has opened
a new window for researchers in the field of
mechanics [1,2]. The simplest nano-electro-
mechanical actuator is a beam-type mechanism
consisting of two conductive electrodes in the
nanoscale of which one is usually fixed and the other
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is movable [3, 4]. This simple system can be found
in systems such as nano-switches and nano-relays
[5]. Applying opposite voltages to two electrodes
causes electrostatic attraction between them. This
attraction causes the fixed electrode to strain toward
the movable electrode [6, 7]. If the bending moment
resulting from the electrostatic force is higher than
the one the nano-beam can withstand, the movable
electrode collapses on the fixed one. This
phenomenon is known as pull-in instability.
Prediction and simulation of the pull-in instability of
MEMS/NEMS are very crucial for reliable design
and fabrication of nano-devices. Hence, it is highly
important to investigate and understand this
phenomenon and factors involved in it. It has
received great attention by the researchers [8,9].

It should be noted that in nanoscale, in comparison
with the macro scale, other phenomena appear which
must be taken into consideration in modeling. Given
the fact that nano-switches have nano dimensions,
this study models the effects of two new phenomena,
i.e. the small scale effect and intermolecular forces.
The study also investigates the nonlinear
geometrical effects which have a great impact on the
results of studies of instability in nanostructures.

The first phenomenon which substantially influences
the mechanical behavior of nanobeams is small scale
effect. The effect of small scale in the nanoscale has
been proven by different researchers using
laboratory experiments. Also, in recent years, in
addition to laboratory experiments, some methods
such as molecular dynamic (MD) have been used to
simulate and examine size effects. Besides, given the
fact that methods such as MD are costly and include
lengthy calculations, in recent years, in order to
examine the mechanical behavior in nanostructure,
researchers have used non-classical continuum
theories such as the nonlocal [9-11], strain gradient
[12-16], and couple stress [17-21] theories, which
have the ability to model size effects. This paper uses
the nonlocal theory to investigate the pull-in
instability in which the small scale effect is included.
The second phenomenon which drastically
influences the mechanical behavior of nanobeams is
the presence of intermolecular forces.Intermolecular
forces in nanoscale are the van der Waals and
Casimir forces. The van der Waals force gains
significance when the gap between the two
electrodes is narrower than a few tens of nanometers
[22]. This force changes with the inverse cube of the
gap between the two electrodes. The Casimir force
is the most famous mechanical effect of vacuum
fluctuations. An important physical quantity related
to the Casimir force is field radiation pressure. Each
field, even vacuum, contains energy. All magnetic
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fields are capable of being released into space and
put pressure on surfaces. This radiation pressure has
adirect relationship with energy and, as a result, with
the frequency of the magnetic field. In the hole’s
resonance frequency, the radiation pressure is
stronger inside than outside; hence, the surfaces
repel each other. Conversely, in non-resonance
conditions, the radiation pressure outside the hole is
stronger, and the electrodes are attracted to each
other. In a state of balance, the repulsion components
are rather stronger than the attraction components.
Therefore, for two fully parallel flat electrodes, the
Casimir force is an attraction and the electrodes
attract each other. This force is proportionate to the
cross-sectional area of the electrodes and the inverse
fourth power of the gap between the electrodes.
Except for geometrical quantities, this force only
depends upon the basic values of Planck’s constant
and the speed of light [23]. Considering the effects
of intermolecular forces in the nano scale, different
researchers have investigated the effects of these
forces on nanostructures [24-28].

Finally, it should be noted that many researchers
have studied the small-scale effect phenomena and
intermolecular forces for nanostructures. This paper,
however, examines small-scale effects and
intermolecular forces in beam-type nano-switches.
In so doing, the non-classical, non-local theory is
used. In this paper, besides the two phenomena made
in nanoscale, the nonlinear geometric effects and the
nonlocal theory are also used to investigate the pull-
in instability in beam-type nano-switches.No study
has so far examined nano-switches using the
nonlocal elasticity theory and DQM while
considering the nonlinear geometric effect. Hence,
this paper attempts to address that issue. For this
purpose, variations method and minimum potential
energy are used. Equations of motion, as well as
boundary conditions,are derived and, finally, DQM
is employed to solve the equations. The findings
revealed that taking nonlinear displacements into
consideration causes an increase in pull-in
instability. The significant result of the study is that
using a small scale and nonlinear nonlocal theory
leads to the results very consistent with experimental
results regarding the classical theory of elasticity,
which shows the high efficiency of the nonlinear
model used with DQM.

2. Preliminaries

2.1. Nonlocal continuum theory

According to the classical continuum theory, stress
at one point of an object is simply a function of the
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strain at that point. In 1983,Eringen and Edelen
published papers and put forth a new theory,
demonstrating that stress at one point of an object
may be a function of strain all over the object [29].
Accordingly, they formulated the nonlocal
continuum theory. In fact, in this theory, the small
scale effect, which was hitherto ignored in
continuum theories, was introduced as a parameter
effective in the stress field (for more information see
Appendix). In the following years and concurrent
with the emergence of micro/nano-electro-
mechanical systems in different branches of science,
the nonlocal theory, as a continuum theory able to
predict the behavior of these systems by considering
the aforementioned factor, appealed to researchers
and scientists. According to this theory, the nonlocal
stress tensor at an arbitrary point of an object is as
follows [30]:

a:jK(|x'-x|,r)S(x')dx’ 1)
A\

where @ is the nonlocal stress tensor at point X,

K‘X'-X| is the kernel function, T is the material

constant which is dependent on length, internal and
external characteristic and S(X')is the classical

stress tensor [12]. It is known that the relationship
between stress and strain in a Hookean solid with
Hook’s law is as follows:

S(x)=C(x):g(x) ()
where () stands for the double-dot product and C

represents the fourth-order elasticity tensor. Eq. (1)
has a simpler form which is much easier to use than
the integrated form and is as follows:

(-r2L24%)o =5 7 =22 @3)

In this equation, ¢_, a and Lrepresent the material

constant, the internal characteristic length and the
external  characteristic  length,  respectively.
Assuming the material to be homogeneous and
isotropic, by substituting Eq. (2) into Eq. (3), one can
derive the stress-strain equation in general, and, for
the one-dimensional case, the constitutive equation
based on the nonlocal theory is as follows:

2

(u=e5a®) “4)

where E represents Young’s modulus [31].
2.2. Euler—Bernoulli beam theory

There are different theories for modeling nano-
beams. Here, the Euler-Bernoulli beam theory is
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used. In this theory, the displacement field is
expressed as:

=0 ®)

where 0O, V- and W are the components of the
displacement field of a point in distance zfrom the
middle surface of the beam in each beam section, and
u and w respectively stand for the values of axial
displacement and traverse displacement in the
middle surface of the beam. By considering von-
Karman-type nonlinear strain and dispensing with
the Poisson’s effect, one can obtain the components
of the strain tensor for the Euler-Bernoulli beam
where the only non-zero strain component is defined
by non-linear geometrical effects (which are along
the x-axis of the beam) as follows:

_ou__ow 1 ow ,
o T axe 20! ©
In the above equation, 1 (@ jz represents von-
2\ ox

Karman-type nonlinear strain [32].
3. Governing equations of motion

Figurel illustrates a nano-switch modeled with a
clamped-free nano-beam. This system is made up of
a fixed electrode called the ground plane and a
movable electrode with a rectangular section with
length L, height h and widthb. These two electrodes
are separated by a dielectric spacer and an initial gap

@ movable electrode ° fixed electrode@ ground

Fig. 1. Schematic model of a beam-type nano-
switch.

As mentioned, in this paper, to derive the governing

equations, variations method and the principle of
minimum potential energy are used as follows:
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§(U-V)=0 M

In the above equation, Uand Vrepresent strain energy
and the work of external forces, respectively.
Considering the Euler-Bernoulli model, the strain
energy in the nano-beam is expressed as:

1L
U= —”0 e dA dx
231

= Je.

F“- AL 1[“’”%&

ox  ox- 2\ ox

The above equation can be expressed as follows:
1 ow Y oW
== -M dx 9
2![ [ax (axjj X6x} ©

and

®

Here the values of parameters N, = I% dA
A

M. :I% Lap 2re determined. On the other hand, the

A
work of external force acting on the beam is
expressed using the following integral:

= [qudx (10)

In Eq. (10), gis the sum of the forces applied to the
beam per unit length.

By substituting Egs. (10) and (8) into Eq. (7) ,
performing variation operations, and setting Ju and
ow to zero, the equations of motion governing the
system are derived as follows:

oN,
ox

0
&(Nx ) X+q 0

=0
(11)

Also, according to Fig. 1, the boundary conditions
for the clamped-free beam are derived from the
following equations:

v OW o
W(X—O)—O,a—x( =0)=0 @2

Q(x=L)=M(x=L)=0

In the above equation, M and Qrepresent the bending
moment and the shear force, respectively.

From Egs. (4) and (6), and by defining parameters
Myand Ny, one can express the normal resultant force
and the bending moment as:
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LN,

Ny = )t A S (T .
_ oW o'M

MX—-EIaX +(e,a) [aXZXJ

By substituting Egs. (11) into Egs. (13), the value of
the bending moment is obtained as:

o’w 0 oW
M, -Elax—-(ea) {q+&(Nx§)} (14)

By substituting Eg. (14) into the boundary
conditions (11), the following equations are
obtained:

2
EA ou aw =0
x? 6x 6x

o'w 0% ow auaw 3( jazw
OX

El —-EA
ot X% ox 6x ) x?°

8“u8w 6W6W63W
648x ax ox? o

3w VY ow _owau L [(ow)
PPl et ey 3+3 7|t
2\ 0X ) ox OX“ OX oX

ow du o'w au}
g W ou, oW

+e,d)* EA{
(15)

ox® ox? ox* ox
d%q
=0-@) 5
The equations of motion in Eq. (15) can be reduced
to a single equation by eliminatingu. For this
purpose, by integration and double differentiation of
the first equation of motion in Eq. (15), the following
equations are derived [32,33].

ou 1,0w L ow 2
—=- +_ d
xoa a ) (6x) X
(16)
64u:_ ow a%_%a“w
ox* ox2 ox® ox ox?

Now, by substituting Egs. (16) into Eq. (15), u can
be eliminated and hence, the nonlinear equation of
motion governing the nano-beam is derived as:

a“w azw 175
ea L a“w & ow , 0%
(,3)? ZWf(a—x - (,a)? —
0 X
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The boundary conditions for the clamped-free nano-
beam are as follows:

W‘X:O:O ’%

=0

x=0

Q ‘x:L =

{EI v (e,2) _6x+EA[2L£(8x) dx]ax3 }

M ‘x:L =

o | 1t oawy, Yow |||
-El y-(eoa) q+EA[2L£(ax) dx]&(zﬂ =0

x=L

It should be noted that by setting the value of e to
zero, the above equation is reduced to the governing
equation of classical nonlinear beam, and, the
integral term of the equation of motion has appeared
due to the von-Karman-type nonlinear strain.
Therefore, in order to investigate the results of linear
displacements, by setting the integral term to zero,
one can obtain the equation of motion in the linear
case.

In Eq. (19), qis the sum of intermolecular forces,
Casimir or van der Waals or electrostatic forces
applied to the nano-beam, which are expressed as:

0 =0gje Tgis + Ygis = Ycas OF CGyan  (19)

The electrostatic forces with fringing field effects,
and Casimir and van der Waals forces per unit length
are expressed as [33].

2 _
qelec = gObV 2 [1+065(g " )J
2(g-w) b

_ 7’heb
~240(g -w '
Ab
67 (g -w )3

(20)

cas

van

where &, V, w, /2, Aand c are permittivity of

vacuum, applied voltage, beam transverse
deflection, reduced Planck’s constant, Hamaker
constant and light speed respectively.

4. Solution method (DQM)
Along with the growing advancement of faster

computing machines, the research is going to
develop the new methods for numerical solution of
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problems in engineering and physical sciences. The
numerical methods for the solution of initial or
boundary-value problems, in general, seek to
transform, either through a differential or an integral
formulation into an analogous set of first-order or
algebraic equations in terms of the discrete values of
the field variable at some specified discrete points of
the solution domain. The differential quadrature
method is a numerical solution technique has been
successfully employed in a variety of problems in
engineering and physical sciences. The method has
been projected by its proponents as a potential
alternative to the conventional numerical solution
techniques such as the finite difference and finite
element methods. In order to solve the equation
using DQM, first, the equation of motion and
governing  boundary conditions are made
dimensionless. To do this, the following
dimensionless parameters are defined:

L S o

g’ 1 L brg‘El’
"= n’hebL :eObV2L4
Y 2409°El’ 29°El

2

o0 _ea (g
0658 =8 o6
/ L (H)

, (21)

By substituting the dimensionless parameters from
Eq. (21) into Egs. (17) and (18), the dimensionless
type of the nonlinear equation of motion and the
boundary conditions of the nano-beam behavior are
obtained as:

(22)

=0 (23)
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In Eqg. (22), for the Casimir and van der Waals
forces, n assumes the values 4 and 3, respectively.
Then, after obtaining a dimensionless form of
governing equations of the nano-beam, the DQM is
used and the pull-in parameters are calculated.

The main idea of the DQM is that the derivative of a
function at a point in the domain can be
approximated as the weighted summation of the
function value at all points in the domain. Using this
approximation, the differential equation is reduced
to a series of algebraic equations. The number of
algebraic equations depends on the number of
sample points. In the DQM, the m-th derivative of
the dimensionless transverse displacement{at each
point such as iis approximated as follows [17,34]:

dam N
dﬂ?,: =>'C'"¢(n;) (24)

i=1

where Ci;“ is the weighted coefficient and Nis the

number of nodes. The values of #; are obtained as
follows:

1 7(j —1)}
. ==|1-cos )
g 2[ N -1

(25)

Using Lagrange polynomial as the basic polynomial,
the weighted coefficients for the first order
derivative are obtained as:

co= |-(’7i2 ’
Y (n-my)L(n;)

1h,j=1,2,.,N ,i=])) 26)
co=cP= ZC(kn,

@,J=1,...N;i ;tk Jd=1)

Where

Con=TTen -m). (=0 @7

And, finally, the weighted coefficients for the higher
order derivatives are defined as follows [33,34]:
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N
Cir=>ccl, (p=12...) (28)
k=1

Now, by substituting the above equations into Eq.
(22), the equation of motion is changed into the
following form through the DQM:

Ci¢i-(05-ec?)

{ [f xe.(em) Jole é”c,-(m)]}(cigagj )}_0

(29)

where O is the Hadamard Matrix product. Also,
coefficients Cyare calculated using Newton-Cotes
integration as follows [35,36]:

N n—n
C=[IT-—"dn (30)

Here, to apply the boundary conditions of the
clamped-free beam, the CBCGE method, initially
proposed by Shu and Du [37], is used. According to
this method, first, using Eq. (28), the boundary
conditions in Eq. (23) are rewritten as follows:

6, =0
C¢ +CI¢, +CHS +
+CR ¢, =0
C¥¢ +C 8, +C P, +..+C O & +
eZ(Ch(,l?lch +C 0, +..+C P\ dy )
+(e2 sf )[C,?"1 L +C 8, +C I, +

(31)
ACENG =

@ @ @)
CN,lé’l +CN,2§2 +CN,3§3 Tt
@ 25
CN,N é’N +€ qN
2 @ @ @
+(e? s f)[C{g +C 8, +C P +

+COG =

By resolving the dimensionless displacement vector
¢, the Egs. (31) can be rewritten in the following
matrix form:
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1 o0 0 o1 ¢
c® c® cl, ci| g
c? ¢ ¢l ¢ gl*
cf, cf, qalce

0 0
Csi Ci . CFN’ ”
Crgz,)3 C!Elz‘)zl CIEIZ)N -2
_C h(lg.)s Clsls?A 153)N -2 é’N )
0 0 0

1

o 0o o 0 |¢
e’sf 2+
( ) c 152)1 c 1512,)2 c 152,)1\1 4 C rgz,)N Cna 32)

cd ¢ chy el ¢
0 0 0o e
0 0 0 | g
eZ 2
0o 0 0 -

C VEll)l C ’511?2 C CL)N q7N

o o . o g

o 0 . o0 |g¢

e?sf =0
C*s)ce ¢t . ol

® co® ®
CN,3 CN,4 e CN,N*Z é’NfZ

where

= d c.lcP ojc®
s = j( )nz [CP¢ may]o[CP¢ )] 33)

By defining matrices of coefficients Ba, Bg, B¢ and
Bo, Eq. (32) is written as follows:

B,E®W +B,E® +(e’ s f )B.E®W +

(e s f)BoE® =—E{a} 34)

where Ba and Bg are 4x4 order matrices, and Bg and
Bo are (N-4)x4 order matrices. Also, vectors E(A)

and E(B) are as follows:

(1 C3
E (A) — CZ E (8) — 64 (35)
CN -1 M
L élN n _CN -2

Now, the equation of motion (29) can be written as
a matrix form, yielding the following equation:

COZ-T(qg+H) =0 (36)
where
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Ty =9; 'eZCiEZ) CHi=f XSX[CSZ)(,-],
E =C (37)

Like the equations of boundary conditions, the
equation of motion in Eq. (36) can be rewritten based
on the two displacement vectors =) and =(®) as
follows:

WNEOHDE® T(g+H) =0 (38)

where Da is a 4x4 matrix and Dg is a Nx(N-4)
matrix. By substituting the equations of boundary
conditions into Eq. (34) and equations of motion in
Eqg. (38), and using linear algebraic theorems, the
governing equations of the beam as well as the
clamped-free boundary conditions are obtained
through the DQM as follows:

{DD-DB [B.+(e?st)B. | [B+(e?sf )BD}}E(E”
-{T+DB[BA+(ezsf)BCTE}a—TH:O (39)

The above equation can be summarized as:

AE® =G(q)+M , M=TH (40)
where A and G are modified matrices of the
coefficients considering clamped-free boundary
conditions.

To solve Eq. (40), one must solve a system of two
equations and two unknowns. Given that vector {{}
is a function of the displacement vector =, one has
to use an iteration algorithm such as the Newton-
Raphson algorithm in programming software. The
following is a summary of the process used in the
present research to solve the nonlinear pull-in
instability problem.

1. For a certain value of g, with an initial

assumption for vectorZ', the values of vector
{q}and M are determined. Then, the nonlinear
Eq. (40) becomes a linear equation, and by
solving this equation, the new displacement
vector = is calculated.

2. By substituting the displacement vector resulting
in stage 1 at the beginning of the cycle, vectors

{@} and M are modified and hence, at each point

of the cycle, the displacement of points is
updated.
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3. Stages 1 and 2 are repeated until the following
convergence condition is satisfied[33].

= (g, )W)

Z((Ei)(kﬂ) )2
where krepresents the number of iteration of the
Newton-Raphson method and A stands for the
degree of variation of the components of the new
displacement vector compared with the
displacement vector of the previous stage.

4. The value of the electrostatic force papplied is
increased and stages 1 to 3 are repeated for new
input values. The increase of f is repeated until
the slope of the nano-beam displacement curve
in relation to the dimensionless voltage A
approaches infinity, i.e. dZ . The last value

ap
of the electrostatic force represents voltage g
and the related displacement represents ¢P'.

<0.0001 (41)

5. Results and discussion

This section is devoted to the investigation of
different parameters affecting the nonlinear pull-in
instability of the clamped-free beam-type nano-
beam. First, the effects of geometrical dimensions
are examined and then, the small scale or the
nonlocal theory is investigated. Afterward, the
effects of Casimir and van der Waals forces on the
pull-in instability of the nano-beam are evaluated.
After that, to consider the intermolecular forces, the
freestanding behavior in the nano-beam is studied
and finally, the validity of the results of the present
research and other studies, as well as experimental
results,are evaluated. It should be noted that in the
diagrams and figures presented in the following
sections, considering Eg. (21), the dimensionless
parameters 5, as, as, f, and e stand for nano-beam
deflection, the length of nano-beam, van der Waals
force, Casimir force, applied voltage, and small scale
in the nonlocal theory, respectively.

5.1. Effect of geometrical dimensions

In Fig. 2, the nano-beam deformation is displayed
based on the different values of the applied voltage
B. As the voltage increases, the values of electrostatic
force and beam displacement increase, too. It can be
seen from Fig. 2 that as the applied voltage reaches
up to p=1.118 if the linear model is used, the
movable electrode collapses on the fixed electrode
and the pull-in modification takes place, whereas if
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the same voltage is applied in the nonlinear model,
the pull-in modification does not occur. In other
words, it could be argued that considering the
nonlinear geometric effects leads to an increase in
the pull-in voltage. It should be noted that in the
nonlinear case, the value of fis taken as 37.5.

0.0
Linear
0.2
— p=0.2
\» 0.4 p=0.4
5=0.6
— p=0.8
0.6 1 ﬂPI
— gMl=r118
0.8 ‘ . ‘ .
0.0 0.2 0.4 0.6 0.8 1.0
n
0.0
Nonlinear
0.2 -
— p=0
— p=0.2
0.4 p=0.4
B=0.6
— p=0.8
0.6
— p=1.1i8
0.8 ; . ‘
0.0 0.2 0.4 0.6 0.8 1.0
n

Fig. 2. Beam deformation for different values of S
for g/b=03=0.5, e=0.3.

As regards the equation of motion, two geometrical
parameters appear in this equation, showing the
geometrical conditions governing the problem. The
first parameter is the ratio of separation gap to the
beam width, i.e. g/b. This ratio is the second term
coefficient of the electrostatic force, known as
fringing field effect. In fact, this parameter is a
criterion which can be altered to compare the
instability behavior of the narrow beam with that of
the wide beam. The second parameter is ‘f* which,
as mentioned before, is entered the equation of
motion due to the consideration of von-Karman-type
nonlinear strain. Figure 3 simultaneously illustrates
the effects of these two parameters on beam
deformation.As displayed by Fig. 3, as the value of
g/b increases or the beam narrows, the force
resulting from the fringing fields increases, and
consequently, the nano-beam develops a greater
tendency for deformation. In other words, the beam
stiffness has a reverse relationship with the value of
this ratio. However, by contrast, the value of ‘f’
reduces beam deformation; therefore, this value has
a direct relationship with the beam stiffness.
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0.00
0.05
& 0.10 -
— =10
— =20
0.15 £=30
— =40
0.20
0.0

0.00

0.05
& 0.10
0.15
— =40
020 +——F— : .
0.0 0.2 0.4 0.6 0.8 1.0

n
Fig. 3. Effects of fringing fields and the coefficient
of nonlinear effects on beam deformation, assuming
os=P=0.7 and e=0.4.

In Fig. 4 and 5, the effects of two geometrical
parameters on the pull-in voltage are illustrated by
considering the Casimir and van der Waals forces,
respectively. As illustrated by Fig. 4, as the g/b value
increases or the beam narrows, the pull-in voltage
decrease and beam deformation increases. Also, as
can be seen in Fig. 4, the higher the value of the small
scale, the higher the pull-in voltage. As illustrated in
Fig. 5, in the presence of the van der Waals force, the
increase in ‘f” leads to an increase in the pull-in
voltage, and, this increase is lower in narrow beams.

5.2. Effect of small scale

Results of experiments carried out by different
researchers demonstrate that in nanoscale, the
mechanical properties of materials are size-
dependent. Therefore, this section is devoted to the
effect of the small scale on the pull-in parameters in
beam-type nano-switches. Figure6 shows the effect
of the size parameter on nano-beam deformation in
the two linear and nonlinear models. As illustrated,
an increase in the size parameter leads to a decrease
in beam deformation. In other words, the size
parameter has a direct relationship with beam
stiffness. Comparison of linear and nonlinear
displacements in Fig. 6 reveals that in the nonlinear
case, the beam has less displacement and stiffer
behavior than in the linear case.
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Fig. 5. Comparison of nonlinear g for different
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Fig. 6. Nano-beam deformation for different values
of ‘e’ for 04=0.3, g/b=p=0.5.

Figure 7 displays the effect of the size parameter on
the pull-in voltage in linear and nonlinear models. As
illustrated, nonlinear displacements cause the nano-
beam to store more strain energy in itself and to have
higher pull-in voltage. Besides, Fig. 7 shows that in
both linear and nonlinear cases, an increase in the
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small scale is accompanied by an increase in the
pull-in voltage, and, an increase in the value of the
van der Walls force leads to a decrease in the pull-in
voltage.

0.00

0.05 4

0.10 4

0.15 4

0.20
— e=0.5

Fig. 7. Effect of size parameter on pF' for
differentvalues of ‘e’ with the assumption of g/b=0.
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3| —— e=01
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e=0.3

/317
(S
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3.0 2.5 2.0 1.5 1.0 0.5 0.0
asz
Fig. 8. Comparison of nonlinear deformation of
nano-beam under the influence of Casimir and van
der Waals intermolecular forces for different values
of ‘e’ with the assumption of a=0.3, f=g/b=0.5 and
f=37.5.
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5.3. Effect of intermolecular forces

As mentioned before, in the nanoscale, the two
Casimir and van der Waals forces influence the
nano-beam behavior. However, depending on the
separation gap size, one of the two forces gains
significant. Researchers usually consider the van der
Waals force as the dominant force in distances below
10 nm [38-40] and the Casimir force in distances
above 20 nm. The attraction resulting from these
forces causes the pull-in phenomenon to occur at a
lower voltage.As can be seen in Fig. 8, when the van
der Waals force is considered as the intermolecular
force, the nano-beam undergoes a lower deformation
than the case where the Casimir force is considered
as the intermolecular force.The effect of
intermolecular forces on B is very significant.
Intermolecular forces decrease the pull-in voltage of
the nano-switch, as shown in Fig. 9.

It can be understood from this illustration that given
the same amount of as and o4, the Casimir force
decreases the pull-in voltage more than the van der
Walls force and has a greater effect than the van der
Walls force.

Figure 10 show the deformation at the nano-beam
end (ripas a function of the dimensionless voltage 3
for different values of intermolecular forces in linear
and nonlinear cases. Two important points can be
implied from this illustration. First, the nano-beam
experiences greater displacement in the presence of
the Casimir force than in the presence of the van der
Waals force. In other words, the effect of the Casimir
force is greater than that of the van der Waals force.
Second, to consider the nonlinear effects in the
equations causes the decrease of the highest nano-
beam deflection, compared to the linear case.

5.4. The freestanding behavior

Of the significant measures in the design of nano-
sensors and nano-switches is the investigation of
their freestanding behavior. Given the fact that in the
nanoscale, forces such as Casimir and van der Waals
forces possess a magnitude comparable to the
electrostatic force, there is the possibility that the
nano-beam undergoes pull-in instability even in the
absence of the electrostatic force. This takes place
when either the gap between the fixed and the
movable electrodes is narrow, or the nano-beam
length is longer than a certain limit. Thus, the
intermolecular force is high enough to cause the
movable electrode to collapse on the fixed
electrodes. This is known as the investigation of
freestanding behavior in nano-switches which shows
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in figure 11. By knowing the value of the
intermolecular force causing this condition, one can
determine the gap between the electrodes and the
critical length of the nano-beam.

B

B

30 25 20 15 1.0 05 0.0
a4

Fig. 9. Effect of intermolecular forces on the pull-in

voltage of the nano-beam for g/b=0.5 and f=37.5.

5.5. Validation of results

In order to verify the validity of the results of the
present research, they are compared with those
reported by other researchers in two sections. In the
first section, the results obtained through the DQM
are compared with those obtained by other
researchers using other methods. In the second
section, a comparison is made between the results of
this study and experimental results. Given the fact
that previous researchers have investigated the pull-
in and beam-type nano-switches usually through the
classical model and linear model and without the use
of the effects of intermolecular forces, here the
results are compared in three consecutive, distinct
tables.

Table 1 displays the geometrical parameters used to
analyze wide and narrow nano-beams. These
parameters are used in the analysis of the following
tables.
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Fig. 11.Values of acr according to the size parameter
for g/b=1 and different values of ‘f’.

Table 1.Geometric parameter of nano-beam.
Dimensions (um)

Case L b h g
Wide beam 300 50 1 25
Narrow 300 05 1 25
beam
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Table2. Comparison of values of pull-in voltage s
using different methods.

BPI
Model Nb"g;?nw Wide beam
DQM (present linear 12 215
model)
Numerical 1.24 2.27
M-test[41] 1.23 2.25
Closed-form Model
[42] 1.21 2.27
HPM[23] 1.21 2.16
MAD [6] 1.27 2.31

Given the fact that in some of the studies mentioned
in the references, the value of dimensionless
deformation at the nano-beam end in the pull-in
moment is presented, in Table 3, like in Table 2, the
results for the values of (™'are compared when the
effects of the intermolecular forces and the size
parameter are ignored and the linear model is used.
As can be seen in Table 3, the results of the DQM
have appropriate consistency with those of other
methods. On the other hand, in the case of the
nonlinear model, the nano-beam has a lower
maximum deformation than in the case of the linear
model, which is consistent with the results obtained
in previous sections.

Table 3. Comparison of values of dimensionless
deformation at the nano-beam tip (™) in different
methods.

CPI
Model g/b=0 glb=1
DQM (present linear

model) 0.429 0.463
DQM (present nonlinear 0418 0.451

model) ’ '
DQM [43] 0.436 0.478
LDL [22] 0.333 0.369
Numerical 0.436 0.478

Table 4. Comparison of values of pull-in voltage
(B™") with the presence of Casmir force.

Seyyed Mohammad Fatemi et, al.

Model Linear Nonlinear
e=0.1 e=0.2 e=0.1 e=0.2
DQM (present | ¢ 49 | 738 0.532 0.843
model)
DQM [43] 0.497 0.742 - -
Numerical 0.497 0.742 - -
LDL [22] 0.452 | 0.637 - -

In Table 4, the results obtained for the pull-in voltage
(8™ through the DQM in this paper are compared
with the results obtained in the references in the
presence of the Casimir force. As can be seen, the
results of the DQM have appropriate consistency
with the results of other methods with the presence
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of the Casmir force; and, applying the linear model
enhances the prediction of the pull-in voltage.
Finally, in order to evaluate the results of the DQM
using the nonlocal theory as well as the linear model
used in the present research, the results of this study
are compared to the experimental results included in
the references [41]. The geometrical properties of
the nano-beam are displayed in Table 5 according to
this reference.

Table 5. Geometric parameter of nano-beam [41].
Material Dimentions(um)

L h b g
250 294 50 1.05

Silicon-110
direction

Figurel2 compares the variations of the pull-in
voltage with the experimental results according to
the nano-beam length and based on the classical
elasticity theory and the nonlocal theory. As is clear
from the illustration, by assuming €=0.3037, the
results of the nonlocal theory have the best
consistency with the experimental results. It can be
argued that by considering the nonlocal theory and
size effects in the nano-switch, the gap between the
classical theory and experimental results is filled,
and this can prove the effectiveness of the use of
non-classical theories in nanostructures.

80

o Experimental resulf (Osterberg [41])
Nonlocal Theory
Classical Theory

£y
=

Pull-in voltage(volts)
n
=

[
=

50 100 150 200 250

Cantilever Length(um)

Fig. 12. Comparing the theoretical and experimental
pull-in voltages for Silicon-110.

6. Conclusions

This paper investigated the static instability of a
clamped-free nano-switch under the influence of
electrostatic forces and intermolecular forces such as
Casimir and van der Waals attractions based on
Euler-Bernoulli’s model and the nonlocal elasticity
theory by considering von-Karman-type nonlinear
strain. The principle of minimum potential energy
was used to derive the governing equations of
motion of the system, and the governing equations
derived through the DQM were solved so as to
derive significant pull-in parameters such as the pull-
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in voltage and displacement of the beam tip, and to
investigate the effect of intermolecular forces,
geometrical dimensions, small effect, fringing field,
and von-Karman-type nonlinear strain on the static
instability behavior of nano-switches.

The results demonstrate that the presence of
intermolecular forces and fringing fields causes a
reduction in the pull-in voltage, and, among the
intermolecular forces in the nanoscale, the Casimir
force plays a more significant role than the van der
Waals force in reducing the pull-in voltage. In
comparison with linear analysis, von-Karman-type
nonlinear strain reduces the displacement of the
beam tip and increase the pull-in voltage,
particularly for higher (g/H) values. In other words,
the nano-beam has stiffer behavior in the non-linear
case than in the linear case. Finally, it can be argued
that by taking into consideration the nonlocal theory
or the size effect in the nano-switch, the gap between
the classical theory and experimental results is filled.
This can prove the effectiveness of the use of non-
classical theories in nanostructures.

Appendix: the material length scale parameters
in nonclassical continuum theory

It is well-established that mechanical behaviors of
micro/nanostructure are size dependent.
Experiments reveal an increase in materials
characteristics with decreasing the size at the ultra-
small scales. All these experiments imply that when
the characteristic size (thickness, diameter, etc.) of a
micro/nanoelement is in the order of its intrinsic the
material length scales (typically sub-micron), the
material elastic constants highly depend on the
element dimensions.

The source of difference between the mechanical
properties of ultra-small and bulk materials with the
same composition can be attributed to several
physical phenomena such as differences in structure,
deformation, or fracture mechanisms [44, 45]. The
differences typically occur when the material
dimensions reach characteristic length scales that are
associated with defect dimensions such as
dislocation, spacing and grain size [46]. At
nanoscale level, the gradient deformations vary
sharply, hence the microscopic stresses and strains
are not constant and depend on the shrinking length
scale of the nanostructures: the smaller the structure,
the more rapid the microscopic fields vary, and they
do so in a way that leads to either stiffening or
softening of the material [47]. In order to model
these gradient effects, higher-order continuum
theories such as strain gradient theory, couple stress
theory, surface elasticity [48,49] and nonlocal
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theory [50,51] are introduced with length scale
parameters. It should be noted that there is no
comparative  study on the properties of
nanostructure based on classical, nonlocal, couple
stress and strain gradient elasticity theories. But
some study shows that the material properties
predicted by the nonlocal elasticity theory are
smaller than those by the classical elasticity theory
and an opposite trend is observed for the predicted
by the couple stress or strain-gradient theories. All
theories converge to the classical elasticity theory as
the nanostructure global dimension increases.

The material length scale parameters also might be
determined via molecular dynamic simulation or
experiments. Previous researchers used atomistic
simulations and molecular dynamics to determine
the size effect parameters [52]. Maranganti and
Sharma [52] used an atomistic approach to
determine strain gradient elasticity constants of
structures. They present mathematical derivations
that relate the strain-gradient material constants to
atomic displacement correlations in a molecular
dynamics computational ensemble. The elastic
constants are explicitly determined for some
representative semiconductor, metallic, amorphous
and polymeric materials. Moreover, these
parameters can also be determined using mechanical
tests [52]. As mentioned above, several methods
such as atomistic approach and experimental used to
determine the microscale parameters in nonclassical
continuum theories.
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