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Abstract 
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1. Introduction

It is well known that many important dynamics 
processes can be described by specific 
nonlinear partial differential equations. But, 
because of the nonlinear part that exists in most 
of these equations, a limited number of them 
have precise analytical solution and most of 
them do not have any analytical solutions. So, 
these nonlinear equations should be solved 
using other methods. In recent decades, 
numerical calculation methods have been good 
means of analyzing these equations. But, in the 
numerical method, stability and convergence 
should   be   considered   in   order   to  avoid 
divergent or inappropriate results. Therefor, 
most scientists believe that the combination of 
numerical and semi-exact analytical methods 
can also end with useful results. Some of these  

useful methods are: Variational Iteration 
Method (VIM) [1, 2, 3, 4, 5], Homotopy 
Perturbation Method (HPM) [6, 7, 8], 
Homotopy Analysis Method (HAM) [9] and 
Adomian Decomposition Method (ADM) [10]. 
One important equation that has been widely 
used in physics is KdV-like, K(p,q), equation 
which was introduced in the 1990s by Rosenau 
[11, 12]. This equation arises in the process of 
understanding the role of nonlinear dispersion 
and in the formation of structures like liquid 
drops and exhibits compactons: solitons with 
compact support [11]. kdv-like equation has the 
following form: 
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where p and q are integers. The (+) case is 
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known as the focusing branch and the (-) case 
as the defocusing branch. In this paper, the 
nonlinear dispersive equation k(p,q) with the 
following form was considered 
 
 ( ) ( ) = 0.p q

t x xxxu a u u         (2) 
 
Because of the ability of Eq. (2) in modeling 
different phenomena, especially in physics, like 
the formation of liquid drops and theory of 
water waves in shallow channels [11, 13], it has 
been widely studied by many authors via 
various methods [14, 15, 16, 17, 18]. In this 
paper, Variational Iteration Method using He's 
polynomials (VIMHP) was applied to find the 
solitary solution and compacton-like solution of 
this equation and it was demonstrated that the 
VIMHP could find the unknown parameters 
more easily than other methods. 

 
2. Basic idea of variational iteration method 
using He's polynomials 
 
To introduce VIMHP, VIM and HPM are 
required to be known. 
 
2.1.   Variational iteration method 
 
The Variational Iteration Method, which 
provides an analytical approximate solution, has 
been applied to various nonlinear problems [19, 
20]. In this section, an alternative approach of 
VIM is presented, which can be implemented in 
a reliable and efficient way to handle the 
nonlinear differential equation, 
 

[ ( )] [ ( )] = ( ),     > 0,L u r N u r g r r           (3) 

where = , 
md

L m Nmdr
  is a linear operator, 

N  is a nonlinear operator and ( )g r  is the 
source non-homogeneous term, subjected to the 
initial conditions, 
 

1.,0,1,2,=  ,=(0))( mkcu k
k       (4) 

where kc  is a real number. According to the 
He's Variational Iteration Method, a correction 

functional can be constructed for (3) as follows: 
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where   is a general Lagrangian multiplier 
which can be optimally identified via 
variational theory. As can be seen, because of 
the existence of nonlinear part in Eq. (3), it is 
not possible to exactly find the optimal value of 
Lagrange multiplier. So, it is necessary to 
consider a limitation on the nonlinear part 
causing this part to be ignored. Therefore, un  
is allocated to show the nonlinear part which 
has a special property. It has restricted 
variation, i.e. = 0.un   making the above 
functional     stationary     considering     that  
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yields the following Lagrange multipliers, 
 

= 1          = 1,for m   
= ,      = 2,r for m    

and in general, 
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Because for 1,m  , the following can be 
written: 
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Using integration by parts would result in 
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which results in ( ) = 1,   And, for m=2, the 
following can be written: 
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Using integration by parts would result in 
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which would result in ( ) = .r     
The successive approximations ( ), 0u r nn   of 
the solution ( )u r  would be readily obtained 
upon using the obtained Lagrange multiplier 
and by any selective function 0u . 
Consequently, the exact solution might be 
obtained using 
 

).(lim=)( ruru n
n   

 
2.2.  Homotopy perturbation method 
 
To illustrate the basic ideas of HPM, the 
nonlinear boundary value problem should be 
considered 
 

[ ( )] [ ( )] = ( ),     ,L u r N u r g r r           (5) 
 
with the boundary condition of 

   
,        0,=),( 


 r

n
uuB                  (6) 

where L  is a linear operator, N  is a nonlinear 
operator and ( )g r  is the source non-
homogeneous term, B  is a boundary operator 
and   is the boundary of the domain  . He's 
Homotopy Perturbation Technique [21, 22, 23, 
24] defines a homotopy 

( ; ) : [0,1]v r p R R   which satisfies 
 

0,=)]()()([ 
)]()()[(1=),( 0

rgvNvLp
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            

                                                                        (7)   
In Eq. (7), [0,1]p  is an embedding 
parameter and 0 ( )u r  is the first approximation 
that satisfies the boundary conditions. It follows 
from Eq. (7) that 
 

  0( ,0) = ( ) ( ) = 0  

  ( ,1) = ( ) ( ) ( ) = 0,

H v L v L u and

H v L v N v g r



 
       (8) 

 
Thus, the changing process of p  from 0 to 1 is 
just that of ( , )v r p  from 0 ( )u r  to ( )u r . In 
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topology, this is called deformation and 

0( ) ( )L v L u  and ( ) ( ) ( )L v N v g r   are 
called homotopic. Here, the embedding 
parameter p  is introduced much more 
naturally, unaffected by artificial factors. Due to 
the fact that 0 1p  , the embedding 
parameter can be considered as a small 
parameter. So, it is very natural to assume that 
the solution of (5) and (6) can be expressed as a 
series of the power of p  
 

,  = 2
2

10  vpvpvv                   (9) 
 
Substituting 1=p  in (9) yields the 
approximate solution of (5) and (6) as follows 
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lim          (10) 

The convergence of series (10) was discussed in 
[25]. The method considers the nonlinear term 

[ ]N v  as 
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 where nH s are the so-called He's polynomials 
[26], which can be calculated using the 
following formula 
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2.3.  Variational iteration method using He's 
polynomials 

 
To illustrate the basic idea of the Variational 
Iteration Method using He's polynomials, the 
following general differential equation can be 
considered: 
 

  ),(=)]([)]([ rgruNruL             (11) 
where L  is a linear operator, N  is a nonlinear 
operator and ( )g r  is the source non-
homogeneous term. According to VIM, for 

0n  , a correct functional can be constructed 
as follows: 
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 . Now, 

applying a series of the power of p  and then 
using He's polynomials, the following can be 
obtained: 
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                                                                (13) 
which is the modified variational iteration 
method using He's polynomials [27, 28]. Now, 
equating coefficients of like powers of p  
would result in 
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                                               
                                                                      (14) 
Therefore, the approximated solutions of (11) 
can be obtained as follows: 

.   = 210  vvvu                            (15) 
 
The zeroth (initial) approximation 0 0=v u  can 
be freely chosen if the initial and boundary 
conditions of the problem are satisfied. The 
success of the method depends on the proper 
selection of the initial approximation 0v . 
However, the initial values 

1,0,1,2,= ,=(0))( mkcu k
k   are 

preferably used for the selective zeroth 
approximation 0v  as will be seen later. For later 
computation, the expression 

),(=),(
0=

txvtxu i
n

in   is allowed to denote the 
n -term approximation to u(x,t). For more 
information about the VIMHP, refer to [29, 30]. 
 
3. Compacton-like solution and solitary 
solution by the VIMHP 
 
To find the Compacton-like solution and 
solitary solution of Eq. (2) by the VIMHP, first, 
the correction functional of the desired equation 
should be made: 
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                                        (16) 
where nu  is considered as restricted variations, 

i.e. = 0nu  . 
To find optimal value of ( )  , teh following is 
done 
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Using integration by parts results in 
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As is known, each approximate solution should 
satisfy initial conditions. So, based on the 
calculus of variations ( ) (0) = 0,  0k

nu k    
and in order to obtain the optimal value of 

( ),    1( , ) = 0nu x t   which results in Euler 
equation and natural boundary condition (the 
stationary conditions), the following can be 
presented: 
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which results in ( ) = 1.    
Now, using this value of Lagrange multiplier, 
the VIMHP can be applied to solve Eq. (2): 
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Comparison of like powers of p  gives: 
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And,   the   solution   will   be   obtained   as  
).,(=),( 0= txvtxu ii

   
                           
Before finding the component of the solution, it 
should be noted that, because of the nature of 
solitary and compacton-like solution, the 
following can be given: 
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So, for 0=n  we obtain: 
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Thus we have: 
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which results in 0.=),(1 txv  . In this case, 
using VIMHP recursive formulation gives 

1  0,=),( itxvi  and 

0=0( , ) = ( , ) = ( , ).iiu x t v x t u x t
  So, to 

determine unknown parameter, only 0 ( , )u x t  
should be substituted in Eq. (2):  
     0.=000

q
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p
xt uauu           (27)              

                                                                       
On the other hand, by having 0 ( , )u x t  and 
substituting it in Eq. (2), unknown parameters 
can be determined and the solitary and 
compacton-like solution can be found and there 
is no need to calculate their other components 
or derivatives. Thus, the VIMHP can overcome 
the difficulty arising in VIM [31] and ADM 
[32, 33]. 
As an illustrating example, (3,1) :k  can be 
considered 

  0.=2
xxxxt uuuu                 (28) 

 
To find the compacton-like solution of this 
equation, the initial solution can be assumed in 
the following form 
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where , , ,a b c k  and w  are unknown 
parameters which should be determined. Based 
on what stated in VIMHP, the following can be 
written: 
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                                                                 (31) 
By comparison of like powers of p , the 
solution will be obtained but, based on the 
result of using above-obtined VIMHP, there is 
no need to do time consuming calculations for 
finding the components of solution and 
unknown parameters. Hence, a majority of 
calculation is reduced. 
By substituting 0 ( , )u x t  in Eq. (28) and using 
MATLAB, the followng can be presented: 
 

4 2[ ( ) ( ) ][2 ( ) ( )] 0Acos Bcos c abcos sin
D
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      

                                                                (32)                                                                                                                         
where 

tkx    
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For solving Eq. (32), the following is set 
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Solving (34) results in obtaining  















.4=
,1.5=

,22=

3kw
cb

cka

                           (35) 

Substituting these values in the compacton-like 
solution lead to reading 
 

 

2 3

2 3

2 2 ( 4 )
( , ) =

1.5 ( 4 )
kcsin kx k t

u x t
c csin kx k t

 

  
        (36) 

or 

 

2 3

2 3

4 2 ( 4 )
( , ) = .

3 2 ( 4 )
ksin kx k t

u x t
sin kx k t

 

  
           (37) 

Also, it can be started by a more general initial 
solution in the form of  

0

1
( , ) = ,

( )
u x t a

c dcos kx wt


 
           (38) 

where , , ,a c d k  and w  are unknown constants. 

Setting 0 1=
t t

u u 

 
 and using MATLAB result 

in: 
 

0,=)](][)()([ 4

H
wtkxdsinGwtkxFcoswtkxEcos 

                                        (39) 
where 

22322= wddkdkaE   
kaddckacwddckF 2224= 23   

)(6)(4= 22234 wtkxcosdcwtkxdcosccG 

      )()(4 4433 wtkxcosdwtkxcoscd   
)(4)(= 3344 wtkxcoscdwtkxcosdH   

      
.)(4)(6 43222 cwtkxdcoscwtkxcosdc 

                                        (40) 
 

The following can be given for solving Eq. 
(39): 
 

          0.=0,=0,= GFE        (41) 
 
And solving (41) yields 
 




















,
6

64=

,
3

=

,=

2

22

2

23

k
kad

k
ac

kakw

                          (42) 

Therefore, the following new compacton-like 
solution is obtained: 
 

2 2
3 2

2 2

( , ) =

1

4 6
( ( ) )

3 6

,

u x t a

a a k
cos kx k ka t

k k


 

  

                                

                                                                (43) 
 
which satisfies Eq. (28) and a  is an arbitrary 

coefficient. If = 2 ,a k  is chosen, (43) can 
be reduced to (37). As was stated before, 
compacton-like solution and solitary solution 
can be converted into each other if = ,k iK  is 
chosen where K  is a constant; then, (43) 
becomes 
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))((
6

64
3

1
=),(

23
2

22

2 tkakkxcosh
k

ka
k
a

atxu








                                     
                      

,1=
I

a                                                   (44) 

where 
 

)])((

))(([
12

64
3

=

23

23
2

22

2

tKaKKx

tKaKKx
K

Ka
K
aI








exp

exp

 
which is a solitary solution of Eq. (28). 
As another case, the initial solution can be 
constructed in a solitary form. So, the following 
can be used to start with 

.
)(exp)(exp

1=),(0 wtkxdwtkxcb
atxu




                                        (45) 
 
By the same technique that is illustrated above, 

0 1= .
u u
t t

 

 
 is set. As is known and 

based on the obtained results using the VIMHP, 
there is no need to calculate 1( , ).u x t . 

Substituting 0 ( , )u x t  in Eq. (28) results in: 

0,=
)](exp)(exp[ 4wtkxdwtkxcb

J


 

                                        (46) 
where 

= [ exp( )

exp( )][ exp( )

J c kx wt

d kx wt L kx wt

 

   
 

        exp(2 2 )M kx wt N    

        
exp( 2 2 )

exp( )]

O kx wt

P kx wt

  

  
 

2 3= 2 ( 2 ),L c wb ka b ka k b    
2 2 3= ( ),M c w ka k   

2 3 2

2 3

= ( )

2 ( 11 ) 2 ,

N b w k ka

cd w ka k kab k

 

    
2 2 3= ( ),O d w ka k   

2 3= 2 ( 2 ).P d bw ka b ka k b               (47) 
From (46), 

= 0, = 0, = 0, = 0, = 0L M N O P         (48) 
 
Solving (48) yields 

2 2

2

2 2

4

= ( ),

= ,
3
3 2

= .
72

w k a k
a

b
k
k a

d
k c

 











                            (49) 

So, the solitary solution is 
1

( , ) = ,u x t a
Q

                                      (50) 

where
3 2

2

2 2
3 2

4

= exp( ( ) )
3

3 2 1
exp( ( ) ),

72

a
Q c kx k ka t

k
k a

kx k ka t
k c

   


    

                                                 

Hereby, a  and c  are arbitrary parameters when 
=d c , Eq. (50) reduces to (44). It is interesting 

to note that solitary solution can be converted 
into a compacton-like solution. Choosing 

=k iK , where K  is a constant, causes (50) to 
become 

  

1
( , ) = ,u x t a

R
                                     (51) 

where
2

2 2
3 2

4

=
3

3 2
( ) ( ( ) )

72

a
R

k
k a

c cos kx k ka t
k c



 
   

2 2
3 2

4

3 2
( ) ( ( ) ).

72
k a

c isin kx k ka t
k c

 
       (52)     

In order to convert (50) into a compact form, 
the last term should be equal to zero. So, teh 
following can be written 
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2 2

4

3 2
= 0,

72
k a

c
k c

 
                                (53) 

Solving (53) for c  and substituting it in (52) 
and then (51) yield the compacton-like solution 

2 2 3 2

2 2

( , ) =

1

4 6 ( ( ) )
3 6

u x t a

a a k cos kx k ka t
k k


   



                         

 
4. Conclusions 
 
In this paper, the effectiveness and convenience 
of the VIMHP were demonstrated for solitary 
solution and compacton-like solution of 
nonlinear dispersive equations. The advantages 
of the suggested method included: 
1-By ignoring the linear part of equation in the 
recursive formulation, a large amount of 
calculation was reduced. 
2-Unknown constants could be rapidly 
determined in comparison with VIM and ADM. 
3-Using VIMHP, there was no need to calculate 

( , ), 1iu x t i   for finding unknown 
parameters because they were equal to zero and 
it was only required to substitute the initial 
solution into original equation. So, finding the 
solitary solution and compacton-like solution 
would not be time consuming and a hard work. 
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