
تعداد نشریات | 11 |
تعداد شمارهها | 214 |
تعداد مقالات | 2,151 |
تعداد مشاهده مقاله | 2,971,341 |
تعداد دریافت فایل اصل مقاله | 2,171,738 |
On the energy of fullerene graphs | ||
Journal of Discrete Mathematics and Its Applications | ||
مقاله 2، دوره 6، شماره 1، شهریور 2016، صفحه 1-10 اصل مقاله (331.27 K) | ||
نوع مقاله: Full Length Article | ||
شناسه دیجیتال (DOI): 10.22061/jmns.2016.499 | ||
نویسندگان | ||
Mahin Songhori؛ Modjtaba Ghorbani* | ||
Srtt University | ||
تاریخ دریافت: 22 بهمن 1394، تاریخ بازنگری: 26 تیر 1395، تاریخ پذیرش: 29 تیر 1395 | ||
چکیده | ||
The concept of energy of graph is defined as the sum of the absolute values of the eigenvalues of a graph. Let λ1, λ2, . . . , λn be eigenvalues of graph G, then the energy of G is defined as E (G) =∑nn=1|λه|. The aim of this paper is to compute the eigenvalues of two fullerene graphs C60 and C80. | ||
کلیدواژهها | ||
eigenvalue؛ fullerene؛ graph energy | ||
مراجع | ||
[1] A. R. Ashrafi, M. Ghorbani and M. Jalali, The vertex PI and Szeged indices of an infinite family offullerenes, J. Theor. Comput. Chem. 7 (2008) 221–231. [2] A. R. Ashrafi, M. Jalali, M. Ghorbani and M. V. Diudea, Computing PI and Omega polynomials of an infinite family of fullerenes, MATCH Commun. Math. Comput. Chem. 60 (2008) 905–916. [3] N. Biggs, Algebraic Graph Theory, Cambridge Univ. Press, Cambridge, 1974. [4] D. Cvetkovi´ c, M. Doob and H. Sachs, Spectra of Graphs–Theory and Applications, Barth, Heidel-berg, 1995. [5] D. Cvetkovi´ c, P. Rowlinson, P. Fowler, D. Stevanovi ´ c, Constructing fullerene graphs from their eigenvalues and angles, Linear Algebra Appl. 356 (2002) 37–56. [6] E. Estrad, Characterization of 3D molecular structure, Chem. Phys. Lett. 319 (2000) 713–718. [7] G. H. Fath-Tabar, A. R. Ashrafi and D. Stevanovi´ c, Spectral properties of fullerenes, J. Comput. Theor. Nanosci. 9 (1) (2012) 327–329 . [8] P. W. Fowler and D. E. Manolopoulos, An Atlas of Fullerenes, Clarendon Press, Oxford, 1995. [9] M. Ghorbani and A. R. Ashrafi, Counting the Number of Hetero Fullerenes, J. Comput. Theor.Nanosci. 3 (2006) 803–810. [10] M. Ghorbani, A. R. Ashrafi and M. Hemmasi, Eccentric Connectivity Polynomial of C18n+10 Fullerenes, Bulg. Chem. Commun. 45 (2013) 5–8.
[11] M. Ghorbani, M. Faghani, A. R. Ashrafi, S. Heidari-Rad and A. Graova´ c, An upper bound for energy of matrices associated to an infinite class of fullerenes, MATCH Commun. Math. Comput. Chem. 71 (2014) 341–354. [12] M. Ghorbani and S. Heidari-Rad, Study of fullerenes by their Algebraic Properties, Iranian J. Math. Chem. 3 (2012) 9–24. [13] M. Ghorbani and E. Naserpour, Study of some nanostructures by using their Kekul´ e structures, J. Comput. Theor. Nanosci. 10 (2013) 2260–2263. [14] M. Ghorbani and M. Songhori, The enumeration of Hetero-fullerenes by Polya’s theorem, Fullerenes, Nanotubes and Carbon Nanostructures. J. Comput. Theor. Nanosci. 21 (2013) 460–471. [15] M. Ghorbani and E. Bani-Asadi, Remarks on characteristic coefficients of fullerene graphs, Appl. Math. Comput. 230 (2014) 428–435. [16] M. Ghorbani, Remarks on markaracter table of fullerene graphs. J. Comput. Theor. Nanosci. 11 (2014) 363–379. [17] C. Godsil and G. Royle, Algebraic Graph Theory, Springer-Verlag, New York, 2001. [18] A. Graova´ c, O. Ori, M. Faghani and A. R. Ashrafi, Distance property of fullerenes, Iranian J. Math. Chem. 2 (2011) 99–107. [19] I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin, 1986. [20] I. Gutman, The energy of a graph, Ber. Math.-Statist. Sekt. Forsch. Graz 103 (1978) 1–22. [21] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969. [22] H. W. Kroto, J. R. Heath, S. C. OBrien, R. F. Curl and R. E. Smalley, buckminster fullerene. Nature. 318 (1985) 162–163. [23] H. W. Kroto, J. E. Fichier and D. E. Cox, The Fullerene, Pergamon Press, New York 1993. [24] S. L. Lee, Y. L. Luo, B. E. Sagan and Y. -N. Yeh, Eigenvectors and eigenvalues of some special graphs, IV multilevel circulants. Int. J. Quant. Chem. 41 (1992) 105–116. [25] W. C. Shiu, On the spectra of the fullerenes that contain a nontrivial cyclic-5-cutset, Australian J. Combin. 47 (2010) 41–51. | ||
آمار تعداد مشاهده مقاله: 2,219 تعداد دریافت فایل اصل مقاله: 619 |