
تعداد نشریات | 11 |
تعداد شمارهها | 214 |
تعداد مقالات | 2,151 |
تعداد مشاهده مقاله | 2,971,327 |
تعداد دریافت فایل اصل مقاله | 2,171,728 |
Modified eccentric connectivity index of fullerenes | ||
Journal of Discrete Mathematics and Its Applications | ||
مقاله 1، دوره 5، 1-2، مهر 2015، صفحه 1-10 اصل مقاله (535.18 K) | ||
نوع مقاله: Full Length Article | ||
شناسه دیجیتال (DOI): 10.22061/jmns.2015.497 | ||
نویسنده | ||
Mardjan Hakimi-Nezhaad | ||
Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, 16785 – 136, I R. Iran | ||
تاریخ دریافت: 04 دی 1393، تاریخ بازنگری: 19 بهمن 1393، تاریخ پذیرش: 10 تیر 1394 | ||
چکیده | ||
The eccentric connectivity index of a graph is defined as E(Γ)=∑uεV(Γ)degΓ(u)e(u), where degΓ(u) denotes the degree of the vertex u in Γ and e(u) is the eccentricity of vertex u. In this paper, the modified eccentric connectivity index of two infinite classes of fullerenes is computed. | ||
کلیدواژهها | ||
automorphism group؛ eccentric connectivity index؛ fullerene graph | ||
مراجع | ||
[1] A. R. Ashrafi and M. Ghorbani, Eccentric Connectivity Index of Fullerenes, In: I. Gutman, B. Furtula, Novel Molecular Structure Descriptors Theory and Applications II. (2008) 183-192. [2] A. R. Ashrafi, M. Saheli and M. Ghorbani, The eccentric connectivity index of nanotubes and nanotori, J. Comput. Appl. Math. 235 (2011) 4561- 4566. [3] A. Dobrynin and A. Kochetova, Degree distance of a graph: A degree analogue of the Wiener index, J. Chem., Inf., Comput. Sci. 34 (1994) 1082-1086. [4] T. Došlić, M. Ghorbani and M. A. Hosseinzadeh, Eccentric connectivity polynomial of some graph operations, Util. Math. 84 (2011) 197-209. [5] P. W. Fowler and D. E. Manolopoulos, An Atlas of Fullerenes, Oxford Univ. Press, Oxford, 1995. [6] A. Graovać and T. Pisanski, On the Wiener index of a graph, J. Math. Chem. 8 (1991) 53-62. [7] M. Ghorbani, Connective eccentric index of fullerenes, J. Math. Nanosci. 1 (2011) 43-50. [8] M. Ghorbani, A. R. Ashrafi and M. Hemmasi, Eccentric connectivity polynomials of fullerenes, Optoelectronics and Advanced Materials-(RC), 3(12) (2009) 1306 - 1308. [9] M. Ghorbani and M. Hakimi-Nezhaad, A note on modified eccentric connectivity index, submitted. [10] S. Gupta, M. Singh and A. K. Madan, Connective eccentricity Index: A novel topological descriptor for predicting biological activity, J. Mol. Graph. Model. 18 (2000) 18-25. [11] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smalley, C60: buckminsterfullerene, Nature 318 (1985) 162-163. [12] V . Sharma , R . Goswami and A.K Madan , Eccentric connectivity index : A novel highly discriminating topological descriptor for structure-property and structure-activity studies, J. Chem . Inf . Comput . Sci. 37 (1997) 273-282. | ||
آمار تعداد مشاهده مقاله: 2,323 تعداد دریافت فایل اصل مقاله: 609 |