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Abstract 
This paper was concerned with studying the magnetohydrodynamic steady 
laminar free convection flow of a micropolar fluid past a continuously moving 
surface in the presence of heat generation and thermal radiation. Similarity 
transformation was employed to transform the governing partial differential 
equations into ordinary ones, which were then solved numerically using the 
finite element method. Numerical results for the dimensionless velocity, 
microrotation and temperature profiles were obtained and displayed graphically 
for pertinent parameters to show interesting aspects of the solution. The skin 
friction and the rate of heat transfer were also computed and presented through 
tables. Favorable comparison with previously published work was performed. 
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Nomenclature 

0B magnetic induction 

fC skin-friction coefficient 

pc specific heat at constant pressure 

f dimensionless stream function 

G  microrotation parameter 

1G  microrotation constant 

h dimensionless microrotation 
k thermal conductivity 

1k coupling constant 

ek mean absorption coefficient 
K coupling constant  
N microrotation or angular velocity 

Nu Nusselt number 
Pr Prandtl number 

rq radiative heat flux 

Q constant heat flux per unit area 

R radiation parameter 
Re the Reynolds number 
s constant characteristic of the fluid 
T fluid temperature 

wT surface temperature 

T ambient temperature 
,u v velocity components in x - and y - directions,

respectively 
,x y Cartesian coordinates along the sheet and 

normal to it, respectively 

Greek Letters 
   thermal diffusivity 
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  thermal expansion coefficient 
  similarity variable 

  dimensionless temperature 
  heat generation parameter 
  vortex viscosity 
  kinematic viscosity 
  dynamic viscosity 
  fluid density 
  electrical conductivity of the fluid 

s  Stefan-Boltzmann constant 
  stream function 
 
Subscripts 
w  condition at the solid surface 
  ambient condition 
 
1. Introduction 
 
A micropolar fluid is the fluid with internal 
structures in which coupling between the spin 
of each particle and the macroscopic velocity 
field is taken into account. It is a 
hydrodynamical framework suitable for 
granular systems which consists of particles 
with macroscopic size. The dynamics of 
micropolar fluids, originated from the theory of 
Eringen [1] has been a popular area of research. 
This theory may be applied to explain the flow 
of colloidal suspensions (Hadimoto and 
Tokioka [2]), liquid crystals (Lockwood et al. 
[3]), polymeric fluids, human and animal blood 
(Ariman et al. [4]) and many other situations. 
Ahmadi [5] presented solutions for the flow of 
a micropolar fluid past a semi-infinite plate 
while considering micro inertia effects. 
Soundalgekar and Takhar [6] studied the flow 
and heat transfer past a continuously moving 
plate in a micropolar fluid. Rees and Pop [7] 
studied free convection boundary layer flow of 
micropolar fluids from a vertical flat plate. 
The study of flow and heat transfer for an 
electrically conducting micropolar fluid past a 
porous plate under the influence of a magnetic 
field has attracted the interest of many 
investigators due to its applications in many 
engineering problems such as magneto 
hydrodynamic (MHD) generators, plasma 
studies, nuclear reactors, oil exploration, 
geothermal energy extractions and the boundary 

layer control in the field of aerodynamics 
(Soundalgekar and Takhar [8]). A number of 
MHD studies have been carried out for 
examining the effects of magnetic field on 
hydrodynamic flow in various 
configurationslike in channels and wedges, etc. 
(Takhar and Ram [9], Kumari [10]). 
In many new engineering areas, processes (such 
as fossil fuel combustion energy processes, 
solar power technology, astrophysical flows 
and space vehicle re-entry) occur at high 
temperatures so knowledge of radiation heat 
transfer beside the convective heat transfer 
plays a very important role and cannot be 
neglected. Also, thermal radiation on flow and 
heat transfer processes is of major importance 
in the design of many advanced energy 
conversion systems operating at high 
temperature. Thermal radiation within these 
systems is usually the result of emission by hot 
walls and the working fluid. Thermal radiation 
effects become important when the difference 
between the surface and the ambient 
temperature is large. The Rosseland 
approximation is used to describe the radiative 
heat flux in the energy equation. On the other 
hand, heat transfer by simultaneous free 
convection and thermal radiation in the case of 
a polar fluid has not received much attention. 
This is unfortunate because thermal radiation 
plays an important role in determining the 
overall surface heat transfer in situations where 
convective heat transfer coefficients are small, 
as is the case with free convection, and such 
situations are common in space technology 
[11]. The flow and heat transfer from a 
continuous surface in a parallel free stream of 
micropolar fluid was studied by Gorla et al. 
[12]. The effect of radiation on heat transfer 
over a stretching surface was important in the 
context of space technology and the processes 
involving high temperature. Raptis [13] studied 
the flow of a micropolar fluid past a 
continuously moving plate by the presence of 
radiation. El-Arabawy [14] analyzed the 
problem of the effect of suction/injection on the 
flow of a micropolar fluid past a continuously 
moving plate in the presence of radiation. 
Seddeek et al. [15] investigated the analytical 
solution for the effect of radiation on flow of a 
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magneto-micropolar fluid past a continuously 
moving plate with suction and blowing 
magneto hydrodynamics; also, radiation effects 
on unsteady convection flow of micropolar 
fluid past a vertical porous plate with variable 
wall heat flux was studied by Gnaneswara 
Reddy [16]. 
The study of heat generation or absorption in 
moving fluids is important in the problems 
dealing with chemical reactions and those 
concerned with dissociating fluids. Possible 
heat generation effects may alter temperature 
distribution; hence, the particle deposition rate 
in nuclear reactors, electronic chips and semi-
conductor wafers.   Recently, Gnaneswara 
Reddy [17] analyzed heat generation and 
thermal radiation effects over a stretching sheet 
in a micropolar fluid. 
The main objective of the present study was to 
obtain the heat generation and thermal radiation 
effects of magneto hydrodynamic free 
convection flow of a micropolar fluid past a 
continuously moving surface. Using the 
similarity transformations, the governing 
equations were transformed into a set of 
ordinary differential equations, which were 
nonlinear and could not be solved analytically; 
therefore, finite element method was used for 
solving it. Numerical computations were 
performed for different values of the parameters 
to display the velocity, microrotation and 
temperature profiles graphically and to discuss 
the results from the physical point of view. The 
skin friction and rate of heat transfer were also 
computed for these parameters.  
 
2. Mathematical formulation 

 
The steady, two-dimensional flow of an 
incompressible electrically conducting 
micropolar fluid past a continuously moving 
sheet can be considered in the presence of heat 
generation and thermal radiation effects.  The 
sheet was stretched with a linear 
velocity wu Bx , where B  is a positive 
constant and x  is the distance from the slit 
where the sheet originates. A uniform magnetic 
field of strength 0B  was assumed to be applied 
in the direction normal to the surface. The fluid 

was assumed to be viscous and had constant 
properties. The applied magnetic field was 
assumed to be constant and the magnetic 
Reynolds number was assumed to be small so 
that the induced magnetic field was neglected. 
Under the usual boundary layer approximation, 
the governing equations were given as follows: 
 
Continuity equation: 

0u u
x y
 

 
 

         (1) 

Momentum equation: 

 

2

12

2
0

u u u Nu v k
x y y y

Bg T T u








   
  

   

         
(2) 

Angular momentum equation: 
 

2

1 2 2 0N uG N
y y

 
  

 
       (3) 

Energy equation: 
 

 

2

2

1 r

p

p

qT T Tu v
x y y c y

Q T T
c




 

  
  

   

 
      (4) 

 
The associated boundary conditions of Eqs. (1 – 
4) can be written as: 
 

1, 0, , 0
2

0, 0,

w
uu Bx v N T T at y
y

u N T T as y


     


   

          (5) 
 
where u  and v  are the velocity components in 
the x  and y direction, respectively,   is the 
density of the fluid, N  is the microrotation 
component whose direction of rotation is in the 
xy  plane,  is the kinematic viscosity, 

1G is the 

microrotation constant, 0B  is magnetic 
induction,   is electrical conductivity of the 
fluid, k  is thermal conductivity, T  is 
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temperature of the fluid in the boundary layer, 
T is the temperature of the fluid far away from 
the plate,   is thermal diffusivity, pc  is the 

specific heat at constant pressure,  1
sk  is 

the coupling constant, s is a constant 
characteristic of the fluid and Q is constant heat 
flux per unit area. 
By using the Rosseland approximation 

(Brewster [18]), the radiative heat flux rq  
could be given by 
 

44
3

s
r

e

Tq
k y
 

 
                                  

(6) 

where s  is the Stefan-Boltzmann constant and 

ek  is the mean absorption coefficient.  
It should be noted that, by using the Rosseland 
approximation, the present analysis was limited 
to optically thick fluids. If the temperature 
differences within the flow were sufficiently 
small, then, Eq. (6) could be linearized by 
expanding 4T  into the Taylor series aboutT , 
which might be in the following form after 
neglecting higher order terms 
  

3 44 4 3T T T T                             (7) 
 
Considering Eqs. (6) and (7), Eq. (4) may be 
reduced to  

 

32 2

2 2

16
3

s

e p

p

TT T T Tu v
x y y k c y

Q T T
c












   
  

   

 
   

  (8)  

The velocity components u and v  can be 
expressed in terms of the stream function 
 such that 

u
y





 and v
x


 
  

It may be verified that the continuity equation 
was automatically satisfied. Also, the following 
non-dimensional variables can be introduced 
 

   

   

1
2 1

2

1
3 2

2
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, ,

w

w
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    













      

 
  
 

 

2
0 1 1

3

, , ,

3 2Pr , ,
16

p e

s p

B k GM K G
B
c k k QR

k T c B


  
 


 

  

  
     

(9) 

 
Considering Eq. (9), Eqs. (2), (3) and (8) can be 
transformed into the following ordinary 
nonlinear system of differential equations 
 

 2' ' ' 0f ff f Gr Mf Kg      

         (10) 
'' (2 '') 0Gh h f           (11) 

(1 ) Pr Pr 0R R f R             (12) 
 
The corresponding boundary conditions were 
 

10, 1, ''(0), 1 0
2

f f h f at     

0, 0, 0f h as     

         (13) 
 
In the above equations, primes denote 
differentiation with respect to  where Gr is  
the thermal Grashof number, M is the magnetic 
field parameter, K is the coupling constant, G  
is microrotation parameter, R  is radiation 
parameter, Pr is the Prandtl number and  is the 
heat generation parameter. 
For the type of flow under consideration, the 
physical quantities such as the wall shear stress 
and surface heat flux was very important, as 
could be given by 
 

0
w

y

u
y

 


 
   

                                       (14) 

0
w

y

Tq k
y 

 
    

                                        (15) 
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where  is viscosity and k is the thermal 
conductivity. 
Hence, the skin-friction coefficient and Nusselt 
number near the plate in non-dimensional form 
can be given by 
 

   
1

2
2

2 Re ' 0w
f

w

C f
u 



                      (16)
 

     
1

2Re 0w

w

xqNu
k T T  



  
          

(17)  

    

where Re wu x
 
 is the Reynolds number. 

 
3. Method of solution 
 
The set of differential Eqs. (10 - 12) subjected 
to the boundary conditions (13) are highly 
nonlinear and coupled and therefore it cannot 
be solved analytically. Hence, following Reddy 
[19] and Bathe [20], the finite element method 
was used to obtain an accurate and efficient 
solution to the boundary value problem under 
consideration. The fundamental steps 
comprising the method were as follows: 
Step 1: Discretization of the domain into 
elements: 
The whole domain was divided to a finite 
number of sub-domains, a process known as 
discretization of the domain. Each sub-domain 
was termed a finite element. The collection of 
elements was designated the finite element 
mesh. 
Step 2: Derivation of the element equations: 
The derivation of finite element equations, i.e. 
algebraic equations, among the unknown 
parameters of the finite element approximation 
involved the following three steps: 
a. Constructing the variational formulation of 
the differential equation. 
b. Assuming the form of the approximate 
solution over a typical finite element. 
c. Deriving the finite element equations by 
substituting the approximate solution in 
variational formulation. 
Step 3: Assembly of element equations:  
The obtained algebraic equations were 
assembled by imposing the inter-element 

continuity conditions, which yielded a large 
number of algebraic equations, constituting the 
global finite element model, which governed the 
whole flow domain. 
Step 4: Impositions of boundary conditions: 
The physical boundary conditions defined in 
Eq. (15) were imposed on the assembled 
equations.  
Step 5: Solution of the assembled equations: 
The final matrix equation could be solved by a 
direct or indirect (iterative) method. For 
computational purposes, the coordinate   
varied from 0  to max 6  , where max  
represents infinity, i.e. external to the 
momentum, energy and concentration boundary 
layers.  The whole domain was divided to a set 
of 100  line elements with equal width 0.05 , 
each element being three nodded. Thus, after 
assembling all the elements equations, a matrix 
of order 201 201  was obtained. This system of 
equations as obtained after assembly of the 
elements equations was non-linear; therefore, 
an iterative scheme was used for its solution. 
The system was linearized by incorporating 
known functions. After applying the given 
boundary conditions, only a system of 195  
equations remained for the solution which was 
solved using Gauss elimination method. This 
process was repeated until the desired accuracy 
of 0.0005 was obtained (For detailed discussion 
of the method, see Gnaneswara Reddy and 
Bhaskar Reddy [21]). 

 
4.  Results and discussion 
 
To verify the proper treatment of the problem, 
the numerical results were compared for 
Nusselt number '(0)  with those obtained by 
Raptis [13] for various values of M .The results 
of this comparison, given in Table 1, showed 
good agreement. 
The distribution of the velocity, microrotation 
and temperature functions with the variation of 
Grashof number, material parameter, magnetic 
parameter, heat generation parameter and 
radiation parameter is shown graphically in 
Figs. 1-14. In the present study, the following 
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default parameter values of finite element 
computations were adopted: 

1.0Gr  , 1.0K  , 1.0G  , 1.0M  , 
1.0R  , 1.0   and Pr 0.71 . All the 

graphs therefore corresponded to these values 
unless specifically indicated on the appropriate 
graph. 
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Fig. 1. Velocity distribution for different .Gr  
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Fig. 2. Microrotation distribution for different .Gr  

 

Figure 1 displays the results for the velocity 
distribution for various values of Gr . It is seen 
that velocity increases with the increase in Gr ; 
thereby, increasing the boundary layer. Figure 2 
shows  microrotation distribution with the 
variation of Gr . Microrotation decreased with 
the increase in Gr , which created a reverse 
rotation only near the boundary for large values 
of Gr .    Figure 3 depicts the temperature 
distribution, which decreased with the increase 

in Gr . It was observed that the cooling of fluid 
occurred within the boundary layer. 
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Fig. 3. Temperature distribution for different .Gr  
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Fig. 4. Velocity distribution for different .K  

 
Figure 4 shows the resulting dimensionless 
velocity profiles  'f   for various values of 
the material parameter K . It was observed that 
the velocity boundary layer thickness increased 
with increasing values of K associated with the 
decrease in the wall velocity gradient. Figure 5 
shows the microrotation distribution with the 
variation of material parameter K. The 
microrotation increased with the increase in K.  
Figure 7 illustrates the velocity profile for 
different values of the magnetic parameter M . 
It showed that, for opposing flow, velocity 
decreased with the increase in M . It is 
demonstrated in Fig. 7 that the microrotation 
increased with the increase of M . Figure 8 
represents the temperature distribution with the 
variation of magnetic parameter, which 
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increased with increase in magnetic parameter 
for the flow. Thus, the high temperature can be 
controlled by magnetic parameter M , which is 
required in many engineering applications. 
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Fig. 5. Microrotation distribution for different .K  
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Fig. 6. Velocity distribution for different .M  

 
Figures 9, 10 and 11 represent the effect of 
radiation parameter R on the velocity, 
microrotation and temperature functions, 
respectively. It is clear from the figures that the 
velocity and temperature decreased with the 
increase in R  while microrotation increased 
with the increase in R . 
Figure 12 shows the effect of heat generation 
parameter    on 'f . It could be observed that 

'f  increased as the heat generation 
parameter  increased. The effect of the heat 
generation parameter   on g within the 
boundary layer region could be seen in Fig. 13. 
It is evident from this figure that g increased as 

the heat generation parameter 
 0  decreased. 
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Fig. 7. Microrotation distribution for different .M  
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Fig. 8. Temperature distribution for different .M  

 
Figure 14 displays effect of the heat generation 
parameter  on . It can be observed that, as 
the heat generation parameter   increased, the 
thermal boundary layer thickness increased.  
The skin-friction coefficient ''(0)f  and the 
Nusselt number '(0)  for different values 
of Gr , K , M , R  and   are tabulated in Table 
2. It is obvious from the table that the skin-
friction coefficient numerically increased with 
the increase in M  and K  while decreasing with 
the increase in Gr ,   and R . The rate of heat 
transfer increased with the increase in Gr ,   
and R  while decreasing with the increase in 
K and M .  
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Fig. 9. Velocity distribution for different .R  
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Fig. 10. Microrotation distribution for different .R  
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Fig. 11. Temperature distribution for different .R  
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Fig. 12. Velocity distribution for different .  
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Fig. 13. Microrotation distribution for different .  
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Fig. 14. Temperature distribution for different .  
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5. Conclusions 
 
The steady two-dimensional laminar boundary 
layer MHD free convection flow of a 
micropolar fluid past a continuously moving 
surface was investigated. Different from 
previous investigations, the effect of thermal 
radiation and heat generation on the 
development of the thermal boundary layer 
flow was taken into consideration. The results 
were presented graphically and the conclusion 
was drawn that the flow field and other 
quantities of physical interest were significantly 
influenced by these parameters. Comparison 
with the previously published works was 
performed and excellent agreement was 
obtained between the results. The main 
conclusions of this study could be summarized 
as follows: 
 
Table 1. Comparison of '(0)  for various values 
of M  with 0.   

M  Raptis [13] Present Work 

0 

1 

2 

3 

0.355590 

0.384224 

0.397385 

0.4044361 

0.355581 

0.384238 

0.397391 

0.404432 

 
 
Table 2. Numerical values of the skin-friction 
coefficient and the Nusselt number for Pr 0.71 . 

Gr  K  M    R  ''(0)f  '(0)  

1.0 

2.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

2.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

2.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

2.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

2.0 

0.925867 

0.128817 

1.21334 

1.42326 

0.564008 

-0.66210 

0.0647193 

0.126857 

0.0514129 

0.0430596 

1.11944 

2.37658 

 
The effects of a transverse magnetic field on an 
electrically conducting fluid caused a resistive-
type force, called the Lorentz force. This force 
had the tendency to speed up the motion of the 
fluid. The result qualitatively agreed with the 
expectations since magnetic field exerted 
retarding force on the convection flow. 

Application of a magnetic field moving with the 
free stream had the tendency to induce a motive  
force which decreased the motion of the fluid 
and increased its boundary layer.  
The velocity and temperature decreased with 
the increase in R  while microrotation increased 
with the increase in R .  
The velocity and thermal boundary layer 
thicknesses increased by increasing the heat 
generation parameter whereas an opposite 
effect could be noted in the case of decreasing 
values of the heat generation   parameter. 
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