
تعداد نشریات | 11 |
تعداد شمارهها | 214 |
تعداد مقالات | 2,151 |
تعداد مشاهده مقاله | 2,971,328 |
تعداد دریافت فایل اصل مقاله | 2,171,731 |
Which fullerenes are stable? | ||
Journal of Discrete Mathematics and Its Applications | ||
مقاله 3، دوره 5، 1-2، مهر 2015، صفحه 23-29 اصل مقاله (870.21 K) | ||
نوع مقاله: Full Length Article | ||
شناسه دیجیتال (DOI): 10.22061/jmns.2015.487 | ||
نویسنده | ||
Maryam Jalali-Rad | ||
University of Kashan | ||
تاریخ دریافت: 20 آذر 1393، تاریخ بازنگری: 16 بهمن 1393، تاریخ پذیرش: 26 اردیبهشت 1394 | ||
چکیده | ||
A fullerene is a molecule composed of carbon in the shape of a hollow sphere, ellipsoid, tube, and many other forms. The spherical ones are called buckyballs and they look like the balls used in football game. The first stable cluster of fullerenes was discovered by Kroto and his co-authors who received the Nobel Prize. In this paper, we introduced some classes of stable fullerene graphs. | ||
کلیدواژهها | ||
fullerene؛ leapfrog operation؛ dual graph؛ graph eigenvalue | ||
مراجع | ||
[1] D. Babić, D.J. Klein, and C.H. Sah, Symmetry of fullerenes, Chem. Phys. Lett. 211(1993) 235–241. [2] A. Behmaram, Matching in fullerene and molecular graphs, Ph. D thesis, University of Tehran, 2013. [3] P.R. Cromwell, Polyhedra, Cambridge University Press, Cambridge, 1997. [4] M. Deza, M. Dutour Sikirić and P. W. Fowler, Zigzags, railroads, and knots in fullerenes, J. Chem. Inf. Comp. Sci. 44 (2004) 1282-1293. [5] P.W. Fowler, D.E. Manolopoulos, D.B. Redmond, and R.P. Ryan, Possible Symmetries of Fullerene Structures, Chem. Phys. Lett. 202 (1993) 371–378. [6] P.W. Fowler and D.E. Manolopoulos, An Atlas of Fullerenes, Clarendon Press, Oxford, 1995. [7] C. Godsil, G. Royle, Algebraic Graph Theory, Springer, New York, 2001. [8] J. E. Graver, Kekulé structures and the face independence number of a fullerene, Eur. J. Combin. 28 (2007) 1115–1130. [9] J. E. Graver, Encoding fullerenes and geodesic domes, SIAM. J. Discr.Math. 17 (2004) 596–614. [10] B. King, M. V. Diudea, The chirality of icosahedral fullerenes: a comparison of the tripling (leapfrog), quadrupling (chamfering), and septupling (capra) trasformations, J. Math. Chem. 39 (2006) 597–604. [11] H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, R.E. Smalley, C60: Buckminsterfullerene, Nature 318 (1985) 162-163. [12] H. W. Kroto, J. E. Fichier, D. E Cox, The Fullerene, Pergamon Press, New York, 1993. [13] K. Kutnar, D. Marusic, On cyclic edge-connectivity of fullerenes, Discr. Appl. Math.156 (2008) 1661–1669. [14] K. Kutnar, D. Marusic, D. Janezic, Fullerenes via their automorphism groups, MATCH Commun. Math. Comput. Chem., 63 (2010) 267-282. [15] P. Mani, Automorphismen von polyedrischen Graphen, Math. Annalen. 192 (1971) 279–303. [16] H. Zhang and D. Ye, An upper bound for the Clar number of fullerene graphs, J. Math. Chem. 41 (2007) 123 – 133. | ||
آمار تعداد مشاهده مقاله: 2,126 تعداد دریافت فایل اصل مقاله: 656 |