| تعداد نشریات | 11 |
| تعداد شمارهها | 227 |
| تعداد مقالات | 2,290 |
| تعداد مشاهده مقاله | 3,543,737 |
| تعداد دریافت فایل اصل مقاله | 2,592,939 |
Szeged index of bipartite unicyclic graphs | ||
| Journal of Discrete Mathematics and Its Applications | ||
| مقاله 2، دوره 1، 1-2، شهریور 2011، صفحه 13-24 اصل مقاله (834.57 K) | ||
| نوع مقاله: Full Length Article | ||
| شناسه دیجیتال (DOI): 10.22061/jmns.2011.459 | ||
| نویسندگان | ||
| Hui Dong؛ Bo Zhou | ||
| Department of Mathematics, South China Normal University Guangzhou 510631, P.R. China | ||
| تاریخ دریافت: 20 دی 1389، تاریخ بازنگری: 21 بهمن 1389، تاریخ پذیرش: 22 اسفند 1389 | ||
| چکیده | ||
| The Szeged index of a connected graph G is defined as the sum of products n1(e|G)n2(e|G) over all edges e = uv of G where n1(e|G) and n2(e|G) are respectively the number of vertices of G lying closer to vertex u than to vertex v and the number of vertices of G lying closer to vertex v than to vertex u In this paper, we determine the n-vertex bipartite unicyclic graphs with the first, the second, the third and the fourth smallest Szeged indices. | ||
| کلیدواژهها | ||
| Szeged index؛ unicyclic graphs؛ bipartite graphs؛ distance | ||
| مراجع | ||
References[1] A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: Theory and applications, Acta Appl. Math. 66 (2001) 211-249.
[2] I. Gutman, A formula for the Wiener number of trees and its extension to graphs containing cycles, Graph Theory Notes N. Y. 27 (1994) 9-15.
[3] B. Zhou, X.Cai, Z. Du, On Szeged indices of unicyclic graphs, MATCH Commun. Math. Comput. Chem. 63 (2010) 113-132.
[4] I. Gutman, L. Popović, P.V. Khadikar, S. Karmarkar, S. Joshi, M. Mandloi, Relations between Wiener and Szeged indices of monocyclic molecules, MATCH Commun. Math. Comput. Chem. 35 (1997) 91-103.
[5] B. Zhou, X. Cai, On detour index, MATCH Commun. Math. Comput. Chem. 63 (2010) 199-210. | ||
|
آمار تعداد مشاهده مقاله: 2,205 تعداد دریافت فایل اصل مقاله: 524 |
||