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Article info: Abstract 
In this paper, the nonlinear free vibrations of thin symmetric and non-
symmetric cross-ply composite plates subjected to biaxial initial stresses are 
investigated. Because of their excellent properties such as specific strength 
and specific stiffness, composite plates have wide applications in aerospace 
and mechanical structures. Based on Von-Karman's strain-displacement 
relations and using Galerkin method, the nonlinear differential equation of 
free vibrations of initially stressed composite plate is obtained. This 
nonlinear equation is solved using two different analytical perturbation 
methods, namely method of multiple scales (MTS) and homotopy 
perturbation method (HPM), to analyze the nonlinear vibrations of initially 
stressed cross-ply composite plates. Effects of tensile and compressive 
biaxial initial stresses, initial vibration amplitude, thickness, and aspect ratios 
of the composite plates on the frequency behavior are investigated. The 
validity of the results is confirmed by making a comparison with those 
reported in the literature. According to the results, both analytical solutions 
show increasing trends for natural frequency parameters by increasing 
normal initial stresses. Regardless of the value of initial biaxial stresses, for 
both symmetric and non-symmetric plates, the results of MTS and HPM are 
in close agreement for the smallest initial amplitude. However, for 
compressive initial stresses, by increasing initial amplitude ratios, the 
discrepancies between the results of HPM and MTS increase for symmetric 
and non-symmetric plates. Although HPM includes less computational effort 
(smaller length of formulation) than MTS, the linear-to-nonlinear frequency 
ratios obtained using MTS method become closer to those obtained by HPM 
as initial vibration amplitude is decreased and initial stress is increased. 
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1. Introduction

Because of their high strength and stiffness to 
weight ratio, composite laminated plates are 
widely used in many high technology industries  

such as aerospace,  aircraft,  and  automobile 
structures.     Dynamic    behaviors    of    these 
composite plates arealways very vital for 
researchers in order to find an appropriate 
material with the best response to the dynamic 
conditions. Since the accuracy of results in 
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dynamic analysis is so important, researchers 
use different methods to find linear and 
nonlinear results of the vibration of composite 
plates. Among different kinds of composite 
plates, cross-ply composite plates have an 
important position owing to their special 
strength and stiffness properties. Different 
kinds of materials are used to construct 
composite plates. The outstanding properties of 
composite materials such as thermal insulation, 
wear resistance, and high strength and stiffness 
to weight ratios have attracted considerable 
attention in recent years. Singh et al. [1] used 
the method of direct numerical integration of 
the frequency ratio in the study of nonlinear 
free vibration behavior of rectangular cross-ply 
laminates. Radu [2] discussed Singh's analysis 
and modified its formulation according to the 
new equations. Zhen et al. [3] used global-local 
higher-order theory for the free vibration of 
laminated composite and sandwich plates. A 
nonlinear elastic foundation was applied by 
Chien et al. [4] to analyze the nonlinear 
vibration of laminated plates. Matsunaga [5] 
investigated the free vibrations of cross-ply 
composite shells subjected to in-plane stresses 
using higher-order shear deformation theory. 
Nonlinear free vibrations of laminated 
composite plates on the elastic foundation and 
random system properties were investigated by 
Lal et al. [6]. A closed form solution was done 
for linear and nonlinear free vibrations of 
composite and fiber metal laminated plates 
using Galerkin and multiple scales solution 
methods by Shooshtari et al. [7].  
The existence of initial stresses during the 
application of composite plates is very common 
in real applications, especially in aerospace 
structures. Consequently, researchers have a 
special concern about this important issue and 
perform some analyses with initial stresses 
applying to different composite structures. 
Chen et al. [8] considered an initial stress in the 
analysis of nonlinear vibrations of hybrid 
composite plates. The dynamic response of 
initially stressed functionally graded material 
thin plate was investigated by Yang et al. [9]. 
Chen et al. [10] conducted the nonlinear 
analysis of initially stressed composite plates 

using Runge-Kutta method to solve the main 
nonlinear equation. 
Different methods exist to find an appropriate 
response of nonlinear dynamic equations such 
as numerical method of Lindstedt-Poincare, 
averaging method, homotopy perturbation 
method (HPM), and multiple scales 
perturbation technique (MTS). 
Recently, HPM as an easy analytical tool for 
solving nonlinear problems has received 
considerable attention. A new perturbation 
technique coupled with homotopy method to 
solve nonlinear equations was presented by He 
[11]. An eigenvalue problem of a lined duct 
using homotopy method was studied by Sun 
[12]. Blendez [13] used He's HPM to show an 
approximate solution for conservative nonlinear 
oscillations. A nonlinear vibration analysis was 
investigated by Yazdi [14] on the FGM plate 
using homotopy perturbation technique. 
Yongqiang [15] analyzed nonlinear free 
vibrations of symmetric rectangular honeycomb 
sandwich panels using HPM. 
Nowadays, MTS is a well-developed, well-
accepted, and very popular method to 
approximate solutions of nonlinear differential 
equations. This method was developed from 
1935 to 1962 by Krylov and Bogoliubov, 
Kuzmak, Kevorkian, and Cole, Cochran, and 
Mahony. In early 1970s, Nayfeh developed this 
method by writing many papers and books on 
this subject. Usefulness and importance of the 
MTS is related to the fact that the governing 
mechanics of deforming media occur over the 
course of time. Also, MTS has good 
computational power to solve nonlinear 
differential equations. Bhimaraddi [16, 17] 
used multiple scales to solve the nonlinear 
flexural vibrations of rectangular plates 
subjected to in-plane forces using a new 
shear deformation theory. Buckling and 
post-buckling of extensible rods were 
investigated by Mazzilli [18] using a multiple 
scales solution.
In this paper, the geometrically nonlinear 
vibration of thin composite cross-ply plates 
subjected to the biaxial tensile and compressive 
initial stresses is studied. HPM and MTS 
perturbation techniques are used to compare 
two analytical solutions in terms of accuracy 
and computational efficiency. Biaxial initial
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stresses, maximum vibration amplitude, 
thickness of the composite plates, and aspect 
ratio of composite plates are considered the 
parameters that affect the frequency ratio. New 
results are presented as benchmark solutions in 
the state of the art. 

2. Problem description

A multilayered thin composite plate with length 
a, width b, and uniform thickness h is 
considered in Fig. 1. u, v, and w are the 
displacement components of the plate in x, y, 
and z directions, respectively. The origin of the 
Cartesian coordinate system is placed on the 
mid-surface of the plate. 

Fig. 1. Geometry of thin composite plate. 

According to the assumptions of large-
amplitude deformation of the plate in plane-
stress state, the dynamic Von-Karman strain-
displacement relations are employed [1]: 
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Based on the classical lamination theory (CLT) 
and considering plane-stress conditions, the 
stress-strain relations are defined as: 
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whereQij are elements of reduced stiffness

matrix for each ply, defined in Appendix A. 
The forces ( Nx , N y , Nxy ), moment resultants (

Mx , My , M xy ),pre-loads including in-plane 

forces ( i
Nx , i

N y , i
N xy ), and out-of-plane moments

( i
Mx , i

M y , i
M xy ) applied to the plate are given by: 
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If the initial stresses are considered uniform 
through the thickness, only in-plane initial 
stresses (force pre-loads) affect the nonlinear 
vibration of composite plate and the moment 
pre-loads become zero. Hence, considering in-
plane initial stresses only, the governing 
equations of the system are obtained using the 
Hamilton's principle [1]: 
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The boundary conditions are considered simply 
supported defined as follows [1]: 

0,x a , 0v w  ,Nx=Mx=0                                            (12)       
0,y b , 0u w  ,Ny=My=0                                             (13) 

Here, the set of admissible functions which 
satisfy the simply supported boundary 
conditions are considered for the displacement 
components to solve the nonlinear free 
vibration problem[1]: 

( ) cos sin
m n
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U(t), V(t), and W(t) are the displacement 
amplitudes in terms of generalized coordinate, t. 
By substituting the displacement components, 
Eqs. (14)-(16), in the governing equations (Eqs. 
(8)-(10)), applying Galerkin method, and 
simplification, W(t) is found in terms of U(t) 
and V(t) according to a single second-order 
ordinary differential nonlinear equation as 
follows: 

2
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where ,  and  are constant coefficients 
depending on the stiffness and mass of the 
composite plate, mentioned in Appendix B. The 
initial conditions for the lateral deflection of the 
plate are considered as follows: 
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0
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where maxW  stands for the maximum vibration 
amplitude of the composite plate. 
 
3. Analytical solutions 
 
In order to solve Eq. (17) as a nonlinear 
differential equation, many methods can be 
applied to get the approximate analytical result. 
In this paper, HPM and MTS perturbation 
methods are considered and discussed by 
numerical results to find the efficiency of each 
analytical method. 
 

3. 1. HPM solution procedure 
 
HPM is used here to find the frequency results 
of the considered cross-ply composite plate. 

( , ) : [0 :1]w r p   defined as a homotopy 
small parameter which satisfies the following 
expression is constructed [11]: 
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Linear and nonlinear parts of Eq. (17) are 
separated by L and N, respectively, and 0u  is 
the first approximation which satisfies the 
initial conditions [11]. Solution of Eq. (17) is 
assumed as a power series [11]: 
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The first approximation 0u  is guessed as 
follows to satisfy the initial conditions[11]: 
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So from Eq. (20) we have: 
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Using variational iteration method [14], the 
solution of Eq. (26) can be obtained. Hence: 
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By integrating Eq. (27), the solution is: 
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In order to find , the coefficient of the last 
term, i.e. secular term, in Eq. (28) should be 
zero. Therefore, a sixth-order ordinary 
differential equation in terms of   is obtained 
whose coefficients contain the geometric and 
stiffness parameters of composite cross-ply 
plate. 
Finally, the first-order approximation of Eq. 
(17) is obtained as follows: 
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3. 2. MTS solution procedure 
 
Multiple scales perturbation method is used 
here to find the frequency results of the 
considered composite plate. Solution of Eq. 
(17) is written as an asymptotic expansion and 
spatial scales are introduced instead of time 
scales: 
 

0 1 2 1 0 1 2( ) ( , , ,...) ( , , , ...)w t w T T T w T T T 
2

2 0 1 2( , , , ...)w T T T 3
3 0 1 2( , , , ...) ...w T T T        (30) 

T n
n t , 0,1, 2, ...n                                           (31) 

The function 0 1 2( , , , ...)q qw w T T T , 1, 2, ...q   is 
calculated when coefficients of increasing 
orders of  , extracted from Eq. (17), are solved 
and secular terms are eliminated. Derivative 
operators are given below: 
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By substituting Eqs. (30)-(33) in Eq. (17) and 
retaining the terms of the coefficients of the 
first-order of  , the following equation is 
obtained: 

2
1 1 00D w w 

                                                 
(34) 

Solution of Eq. (34) can be written in a 
complex form as follows: 
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where A is a complex function of T1,T2,T3. 
By retaining the terms of the coefficients of the 
second-order of  , the following equation is 
obtained: 
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For the convergence of expansion Eq. (30), the 
secular term on the right-hand side of Eq. (36) 
must be eliminated, which leads to the so-called 
solubility condition equation: 
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Retaining the terms of the coefficients of the 
third-order of  , the following equation is 
obtained : 
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In order to eliminate the secular term, the 
following solubility condition equation is 
obtained: 
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where A  is the complex conjugate (C.C.) of A. 
Solution of Eq. (40) is considered in the 
following form: 

1

2
iBA ae , ,a B R                                            (41) 

where a is a constant coefficient and B is 
obtained as follows: 
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A particular solution of Eq. (39) is: 
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Hence, the natural frequency is obtained as 
follows: 
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Finally, from Eqs. (35), (38) and (43), the 
deflection response up to terms of order 3  is 
obtained as follows: 
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In the next section, both HPM and MTS are 
discussed in detail by some numerical solutions 
for two multilayered cross-ply composite 
plates. 
 
4. Numerical results 
 
The numerical results for cross-ply composite 
plates subjected to different initial stresses, 
initial amplitude, aspect ratios of the plate, and 
length to thickness ratio are provided. In order 
to validate both of the proposed HPM and 
MTS, the nonlinear vibration of thin cross-ply 
laminated plates with different ratios of initial 
stresses is compared with the one reported by 
Singh [1], Radu [2], and Bhimaraddi [16], as 
indicated in Tables 1 and 2, respectively. The 
values of initial biaxial stresses are considered: 

iN x = iN y =N, iNxy =0                                         (46) 

In the case of compressive initial stresses, the 
critical value of N is obtained and called, ௖ܰ

௕, 
the critical buckling stress. The non-
dimensional ratio of the biaxial initial stresses 
to the critical buckling stress (ܰ

௖ܰ
௕ൗ ) is 

considered in Tables 1 to 4. 
The accuracy of HPM for nonlinear vibrations 
of cross-ply plates without initial stresses is 
investigated in Table 1. Results for HPM are 
compared with those by both Singh [1] and 
Radu [2] for two different lay-ups of cross-ply 
composite plates, aspect ratios, and initial 
amplitudes. Numerical integration method is 
used to find the nonlinear vibrations of the 
considered plates by Singh [1]. Radu [2] 
presented a discussion on Singh's results and 
modified his equations by the same numerical 
integration method. 
According to Table 1, for both symmetric and 
non-symmetric cross-ply laminated plates, there 
is a good agreement between HPM results and 
those reported in the literature for small initial 
amplitudes. For instance, the greatest 
percentage discrepancy for maxW h =0.25 is 
0.8%. However, by increasing the initial 
amplitude, the percentage discrepancies are 
increased and HPM shows less accuracy at high 
initial amplitudes like maxW h =2 by the 
percentage discrepancy of 2.95% for the non-
symmetric cross-ply plate. 
Linear to nonlinear frequency ratios for two-
layered cross-ply square plate that are 
calculated by both HPM and MTS for different 
initial stresses and initial amplitudes are 
compared with those reported by Bhimaraddi 
[16] in Table 2. As can be seen in this table, the 
maximum percentage discrepancy between the  
MTS results and those of Bhimaraddi [16] for 
initial tensile stresses is 3.06%, which occurs in 
the case of stress ratio (ܰ

௖ܰ
௕ൗ ) equal to 0.5 and 

initial amplitude ( maxW h ) of 1. However, for 
compressive initial stresses, MTS shows less 
accuracy. The maximum percentage 
discrepancy is equal to -18.5%, which occurs 
for stress ratio (ܰ

௖ܰ
௕ൗ ) of -0.125 and initial 

amplitude ( maxW h ) of 1. 



JCARME                                                  Assessing different . .  .           Vol. 5, No. 1, Aut.-Win. 2015-16 

31 
 

According to Table 2, as compared to 
Bhimaraddi's [16] results for both HPM and 
MTS, the discrepancies are increased by 
increasing ( maxW h ) and decreasing (ܰ

௖ܰ
௕ൗ ). 

Also, the discrepancies are decreased by 
decreasing ( maxW h ) and increasing (ܰ

௖ܰ
௕ൗ ). 

Generally, the discrepancies corresponding to 
MTS are less than those for HPM, as compared 
to Bhimaraddi's [16] results. 
The results of frequency ratio for both 
symmetric and non-symmetric cross-ply 
composite plates under different initial biaxial 
stresses and initial amplitudes are obtained in 
Table 3. According to this table, regardless of 
the value of initial biaxial stresses, for both 
symmetric and non-symmetric plates, the 
results of MTS and HPM are in close 
agreement for the smallest initial amplitude, 

maxW h =0.25. However, for compressive initial 

stresses, ܰ
௖ܰ
௕ൗ = −0.5, by increasing initial 

amplitude ratio from 0.25 to 1, the 

discrepancies between the results of HPM and 
MTS increase from 0.67% to 33.74% for the 
symmetric plate and 1.81% to 36.03% for non-
the symmetric plate (a/h=75). Nevertheless, by 
altering biaxial initial stresses from 
compressive to the tensile one, lower 
discrepancies are obtained due to increasing 
initial amplitudes. For ܰ

௖ܰ
௕ൗ = 2, by increasing 

initial amplitudes from 0.25 to 1, the 
discrepancies between HPM and MTS increase 
from 0.01% to 2.98% for the symmetric plates 
and 0.02% to 3.47% for the non-symmetric 
plates. According to this table, more accurate 
results are obtained for both composite plates 
due to tensile initial stresses. In contrast, for 
compressive initial stresses, less accurate 
results are shown for HPM and more reliable 
results from MTS are provided as compared to 
Bhimaraddi's [16] results. Also, it should be 
mentioned that symmetric plates show less 
discrepancies between MTS and HPM in 
comparison with the non-symmetric plates. 

 
Table 1. Comparing nonlinear to linear frequency ratio (

NL L
  ) for thin cross-ply laminated plate, (0/90)2 and 

(0/90)s, a/b=1, no initial stress (ܰ
௖ܰ
௕ൗ ) = ଵܧ   .0 ⁄ଶܧ = ଵଶܩ,10 ଶܧ = 0.5,ଵଶ = 0.25,   ܽ ℎ⁄ = 75⁄ , n=m=1. 

 

              *: Percentage discrepancy= (HPM-Ref [1])/Ref [1] *100 

               +: Percentage discrepancy= (HPM-Ref [2])/Ref [2]*100 
 
 
 

                                              (0/90)s (0/90)2 
W hm a x  Singh[1] Radu[2] HPM Singh[1] Radu[2] HPM 
0.25 1.0498 1.0629 1.0591(0.80)* 

(-0.3)+ 
1.0556 1.0702 1.0634(0.7) 

(-0.6) 
0.5 1.1907 1.2306 1.2194(2.41) 

(-0.9) 
1.2113 1.2552 1.2344(1.90) 

(-1.65) 
1 1.6314 1.7400 1.7173(5.26) 

(-1.3) 
1.6906 1.8080 1.7598(4.09) 

(-2.66) 
2 2.7553 3.0052 2.9676(7.70) 

(-1.2) 
2.8941 3.1609 3.0675(5.99) 

(-2.95) 
n=1, m=2, (

NL L
  ) 

0.25 1.0441 1.0470 1.0441  (0) 
(-0.2) 

1.0729 1.0704 1.0699(-0.2) 
(-0.04) 

0.5 1.1701 1.1754 1.666(-0.2) 
(-0.7) 

1.2718 1.2681 1.2566(-1.1) 
(-0.9) 

1 1.5711 1.5826 1.5635(-0.4) 
(-1.2) 

1.8589 1.8599 1.8214(-2.0) 
(-2.07) 

2 2.6118 2.6363 2.6051(-0.2) 
(-1.1) 

3.2804 3.2978 3.2066(-2.2) 
(-2.76) 



JCARME                                                       H. M. Panahiha, et al.       Vol. 5, No. 1, Aut.-Win. 2015-16 

32 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

        Table 2. Comparing linear to nonlinear frequency ratio (
L NL

  ) for thin two-layered cross-ply laminated 
        plate, (0/90), a/b=1, ܧଵ ⁄ଶܧ = ଵଶܩ,25 ଶܧ = 0.5, ଵଶ = 0.25,   ܽ ℎ⁄ = 10⁄ , n=m=1. 

 
ࡺ
ࢉࡺ
ൗ࢈   0.25 0.5 0.75 1 

 
-0.5 

HPM 0.7642 (-17.3)* 0.5092 (-32.8) 0.3665 (-38.4) 0.2830 (-33.0) 
MTS 0.9272 (0.2)+ 0.7611 (0.3) 0.5860 (-1.5) 0.4433 (4.8) 

Bim[16] 0.9246 0.7582 0.5953 0.4227 
 

-0.125 
HPM 0.8431(-11.6) 0.6164 (-27.2) 0.4622 (-37.7) 0.3637 (-49.1) 
MTS 0.9571(0.2) 0.8479 (0.1) 0.7125 (-3.9) 0.5823(-18.5) 

Bim[16] 0.9544 0.8470 0.7419 0.7150 
 
0 

HPM 0.8587 (-10.5) 0.6418 (-25.5) 0.4868 (-35.6) 0.3852(-44.8) 
MTS 0.9623 (0.2) 0.8644 (0.2) 0.7391 (-2.3) 0.6144 (-11.9) 

Bim[16] 0.9597 0.8619 0.7570 0.6979 
 

0.5 
HPM 0.8990 (-7.55) 0.7158 (-20.5) 0.5637 (-30.4) 0.4552 (-37.4) 
MTS 0.9745 (0.2) 0.9053 (0.4) 0.8095 (-0.1) 0.7050 (3.06) 

Bim[16] 0.9725 0.9011 0.8110 0.7273 
 
1 

HPM 0.9214 (-5.89) 0.7639 (-17.2) 0.6190 (-26.9) 0.5084 (-33.8) 
MTS 0.9808 (0.1) 0.9273 (0.4) 0.8500 (0.3) 0.7612 (-0.9) 

Bim[16] 0.9791 0.9230 0.8473 0.7685 
 
2 

HPM 0.9455 (-4.09) 0.8232 (-13.0) 0.6945 (-21.97) 0.5859 (-29.0) 
MTS 0.9871 (0.1) 0.9503 (0.3) 0.8947 (0.8) 0.8270 (0.1) 

Bim[16] 0.9859 0.9467 0.8901 0.8254 
 
 
          Table 3. Comparing linear to nonlinear frequency ratio (

L NL
  ) for thin four-layered cross-ply laminated                  

           plate,(0/90)sand (0/90)2  a/b=1,   ܧଵ ⁄ଶܧ = ଵଶܩ,25 ଶܧ = 0.5, ଵଶ = 0.25,   ܽ ℎൗ = 75⁄ . 

 (0/90)s (0/90)2 
ܰ

௖ܰ
௕ൗ  Methods 0.25 0.5 0.75 1 0.25 0.5 0.75 1 

-0.5 
 

MTS 0.8908 0.6711 0.4755 0.3378 0.8835 0.6547 0.4574 0.3216 

HPM 0.8968 0.7118 0.5597 0.4518 0.8895 0.6975 0.5443 0.4375 

-0.125 MTS 0.9349 0.7823 0.6149 0.4732 0.9304 0.7696 0.5975 0.4550 
HPM 0.9370 0.8015 0.6663 0.5566 0.9326 0.7907 0.6525 0.5424 

0 
 

MTS 
 

0.9427 0.8043 0.6462 0.5068 0.9386 0.7926 0.6294 0.4885 

HPM 0.9442 0.8201 0.6907 0.5823 0.9403 0.8101 0.6774 0.5683 
0.5 MTS 0.9611 0.8607 0.7331 0.6071 0.9583 0.8517 0.7186 0.5895 

HPM 0.9617 0.8689 0.7602 0.6595 0.9591 0.8612 0.7487 0.6462 
1 
 
 

MTS 
 

0.9706 0.8919 0.7857 0.6735 0.9684 0.8846 0.7732 0.6572 

HPM 0.9709 0.8968 
 

0.8037 0.7117 0.9689 0.8905 0.7937 0.6994 

2 
 
 

MTS 
 

0.9802 0.9253 0.8463 0.7560 0.9788 0.9201 0.8366 0.7422 

HPM 0.9803 0.9276 0.8558 0.7786 0.9790 
 

0.9230 0.8479 0.7680 
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Effects of different initial amplitudes and length 
to thickness ratios on the frequency ratios are 
investigated in Table 4. According to the 
results, the influence of thickness of the 
symmetric and non-symmetric cross-ply 
composite plates on the frequency ratios is 
negligible. For high initial amplitudes, by 
increasing the initial amplitude, the 
discrepancies of HPM and MTS are increased. 
For instance, for a/h=200, by increasing the 
initial amplitudes from 0.25 to 1, the 
discrepancies between HPM and MTS are 
0.05% and 6.49% , respectively, for the 
symmetric plates and 0.05% and 6.45% for the 
non-symmetric ones. In the case of four-layered 
plates, the effect of layup (symmetric and non-
symmetric) on the frequency ratios is not 
significant for different length to thickness 
ratios.Some graphical results are shown to 
investigate the effects of different initial 
stresses, initial amplitudes, and aspect ratios on 
the frequency ratios. 
In Fig. 2, the variation of frequency ratio versus 
initial stress parameter (ܰ

௖ܰ
௕ൗ ) is shown for 

MTS and HPM frequency analysis methods. 
Also, the results are compared with those of 
Bhimaraddi [16]. Variation of nonlinear to 
linear frequency ratios versus different initial 
amplitudes for an isotropic plate without initial 
stresses are investigated by both HPM and MTS 

and validated using the results of Chen [10] in 
Fig. 3. According to Figs. 2 and 3, MTS shows 
more accurate results, especially at high initial 
amplitudes rather than HPM as compared to 
Chen's [10] and Bimaraddi's [16] results. 
According to Fig. 3, both analytical solutions 
show increasing trends by increasing normal 
initial stresses, which is analogous to the results 
by Chen [10] that are obtained using Runge-
Kutta solution method. 
Variations of linear to nonlinear frequency 
ratios versus initial amplitude for two special 
compressive and tensile biaxial initial stresses 
are investigated in Fig. 4. In both cases, by 
increasing the initial amplitudes, the 
discrepancies between two methods are 
increased. 

 
Fig. 2. Frequency ratio versus initial stress 
parameters are validated with the results of 
Bhimaraddi[16] for two-layered cross-ply plate 
(0,90), W/h=1, a/b=1, a/h=10. 
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Table 4. Comparison of linear to nonlinear frequency ratio (
L NL

  ) for thin four-layered cross ply laminated 

plate, (0/90)s  and (0/90)2  a/b=1,   ܧଵ ⁄ଶܧ = ଵଶܩ,25 ଶܧ = 0.5,ଵଶ = 0.25,   N
Nୡ
ୠൗ = 1ൗ , n=m=1. 

 (0/90)s (0/90)2 
ܽ
ℎൗ  Methods 0.25 0.5 0.75 1 0.25 0.5 0.75 1 

200 MTS 0.9683 0.8841 0.7722 0.6560 0.9683 0.8843 0.7726 0.6565 

HPM 0.9688 0.8901 0.7930 0.6986 0.9688 0.8903 0.7933 0.6989 

100 MTS 0.9703 0.8909 0.7839 0.6711 0.9683 0.8843 0.7725 0.6564 
HPM 0.9707 0.8962 0.8028 0.7105 0.9688 0.8902 0.7932 0.6988 

20 
 

MTS 
 

0.9867 0.9487 0.8915 0.8221 0.9683 0.8843 0.7725 0.6564 

HPM 0.9867 0.9498 0.8964 0.8348 0.9688 0.8900 0.7928 0.6981 

10 MTS 0.9683 0.8843 0.7725 0.6564 0.9683 0.8843 0.7725 0.6564 

HPM 0.9687 0.8898 0.7922 0.6972 0.9687 0.8898 0.7922 0.6972 

 



JCARME                                                       H. M. Panahiha, et al.       Vol. 5, No. 1, Aut.-Win. 2015-16 

34 
 

 
Fig. 3. Frequency ratio versus different initial 
amplitudes are validated with the results of Chen[10] 
for an isotropic plate with no initial stresses, a/b=1, 
a/h=10, ܰ

௖ܰ
௕ൗ =1. 

 
Fig. 4. Frequency ratio versus different initial 
amplitude for a four-layered symmetric cross-ply 
plate (0,90,90,0), a/b=1, ܰ

௖ܰ
௕ൗ =-0.25, a/h=75. 

 
5. Conclusions 
 
In this work, the nonlinear vibrations of the 
symmetric and non-symmetric cross-ply 
composite plates initially stressed by biaxial 
stresses were investigated. Both homotopy 
perturbation method and multiple scales 
perturbation technique as analytical solutions 
were applied and the numerical results were 
compared to those available in the literature. 
Investigating the effects of different initial 
biaxial stresses, initial amplitudes, and plates' 
thickness ratio on the frequency ratio indicated 
that MTS was more adequate than HPM in a 
wide range of initial amplitude and initial 
stresses. However, HPM had less computational 
formulation than MTS. Some new interesting 

results were presented which have not been 
previously reported in the literature. 
 
Appendix A[16] 
 

 4 4 2 2
Q = Q cos θ + Q sin θ + 2 Q + 2Q sin θcos θ11 11 22 12 66  
(A2) 

 4 4 2 2
Q = Q sin θ + Q cos θ + 2 Q + 2Q sin θcos θ22 11 22 12 66
(A3) 

   2 2 4 4
Q = Q +Q - 2Q -2Q sin θcos θ+Q sin θ+cos θ11 22 12 66 6666

(A4) 
 
Appendix B 
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