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 Studying Gaussian beam is a method to investigate laser beam 
propagation and ABCD matrix is a fast and simple method to simulate 
Gaussian beam propagation in different mediums. Of the ABCD matrices 
studied so far, reflection and refraction matrices at various surfaces have 
attracted a lot of researches. However, in the previous work the incident 
beam and the principle axis of surface are in parallel. As an extension to 
those investigations, a general scheme that the incident beam is oblique is 
discussed here and the full analysis of the reflection and refraction of a 
Gaussian beam at the surface of a tilted concave/convex elliptic 
paraboloid surface is addressed. Based on the optical phase matching, 
analytic mathematical equations are derived for the spot size and the 
wavefront radius of a beam. Expressions are converted into the ABCD 
matrices, which are more convenient and practical to use. Finally, a 
practical case is analyzed by applying the obtained formulas. This 
analysis is important since paraboloid surfaces in optics or terahertz 
waves are used as mirrors or lenses. 
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1.  INTRODUCTION 

A solution of paraxial Helmholtz differential 
equation	is	Gaussian	beam	[1]-[2].	Gaussian	beam	has	
been applied in different areas like laser propagation 
model	 [3]-[4],	 fiber coupling	 model	 [5]-[6],	 wave	
expansion	 [7]-[8],	 free	 space	 optics	 propagation	 [9]-
[10],	 scattering	 analysis	 [11]-[12],	and	 synthesis	 and	
analysis	 of	 reϐlectors	 [13]-[14]	 and	 dielectric	 lenses	
[3], [15].	When	a	laser	beam	is	reϐlected	from	a	mirror	
or passing through a lens, it is essential to understand 
the laser beam characteristics before and after the 
optics, then in this paper reflection and refraction of a 
laser beam at a curved surface is studied.  

As mentioned before, in most areas it is essential to 
investigate the beam propagation in different 

environments and by using the ABCD matrix it is 
easier	to	simulate	the	Gaussian	beam	propagation	[1].	
Therefore, several researches have deduced the ABCD 
matrix for different mediums, especially for reflection 
and refraction of a Gaussian beam at parabola of 
revolution	 [16]-[19],	 elliptic	 paraboloid	 [17],	
ellipsoidal	surface	[18],	and	hyperpoloid	of	revolution	
[16]-[19].	However, to the best of our knowledge none 
of the published papers considered a tilted 
surface/beam.	Referring	to	[20]-[ 21],	once	can	realize	
that using off-axis parabolic surfaces in optical 
antenna or terahertz wave applications, is inevitable. 
However, in	 published	 papers	 [16]-[19],	 the	 authors	
assumed that the beam is propagating in parallel to 
the	 surface	 principle	 axis.	 In	 [17], the authors have 
considered a paraxial beam reflected and refracted 
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from a convex elliptic paraboloid. Though in their 
analysis there is an angle between the beam 
propagation axis and the surface principle axis, during 
the mathematical manipulations the angle was 
neglected due to paraxial approximation. 

In this paper, a simple analytical method is 
introduced to deal with tilted surfaces. One of the 
applications where this analysis is useful is 
propagation of a laser beam or terahertz wave 
through a tilted parabolic lens or reflection of a laser 
beam	 from	 a	 tilted	 parabolic	 mirror	 [22]-[23].	 To	
investigate different cases of surface tilting angle, we 
consider two different types of paraboloid interface 
(concave and convex). For each case, separate spot 
size, and wave front radius are obtained by applying 
the electromagnetic boundary conditions along 
interface, and then ABCD matrix is extracted. At the 
end of each case, the input incident angle is assumed 
to be equal to Brewster angle and the distinct ABCD 
matrix for that special problem is presented. Though 
the investigation is based on Gaussian beam theory of 
lasers, it should be mentioned that as long as the 
following assumptions are correct, the obtained 
equations can be used for different Gaussian beam 
applications. 

Three assumptions are made to simplify the 
mathematics. First, compared to radiuses of curvature 
of the wave front and optical surface, a small beam 
spot size is considered. With this assumption, up to 
the second order spatial variation which is important 
in the wave front change along the transverse 
coordinate	 is	 considered	 [18].	 Second,	 for	 simplicity,	
the principle axis of the interface must lie in the plane 
of incidence. The third hypothesis requires that the 
beam propagation axis on the incident plane must 
intercept the interface principle axis. This assumption 
is more relevant for practical problems. 

The rest of the paper is organized as follow. In 
Section	 2,	 the	 original	 problem	 is	 simpliϐied	 into	 an	
equivalent	 one.	 Section	 3	 analyzes	 the	 reϐlection	 of	
Gaussian beam at the surface of a concave elliptic 
paraboloid	surface.	Section	4	deals	with	refraction and 
Section	 5	 represents the problem geometry and 
principles for an elliptic convex paraboloid.	Section	6	
is devoted to study two interesting problems. In this 
section, first, we find a suitable point for a laser source 
in front of tilted parabola of revolution reflector which 
will result in a collimated beam. Then, we study the 
relation between angle of tilting and reflected beam 
waist. In the last section, the conclusion is 
summarized. All the obtained equations are 
summarized in appendix I. 

2.  PROBLEM SIMPLIFICATION  

Consider	 the	geometry	 illustrated	 in	Fig.	1(a).	The	
Gaussian beam in the incident coordinate i is 

propagating along the zi axis where the interface 
principle	axis	lies	on	z	and	θ0 is the tilting angle. 

The x and xi axes are perpendicular to the plane of 
incidence and all coordinates are right-handed. In Fig. 
1	 the	 base	 coordinate	 is	 the	 incident	 coordinate	 and	
the interface coordinate is rotated clockwise by the 
angle	of	θ0. However, to avoid complexity, it is wise to 
consider the interface coordinate (x,y,z) as the base 
and rotate the incident coordinate counter-clockwise 
by	 the	angle	of	θ0 to obtain the equivalent geometry, 
Fig.	1(a). 
As	depicted	in	Fig.	1(b), the beam propagation axis 

passes the source point S(xs=0,ys,zs) in the interface 
coordinate. The elliptic concave paraboloid surface in 
the (x,y,z) coordinate is written as: 
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Figure 1: (a) Original problem geometry, (b) Equivalent 
problem geometry 

 
ὼ
ὥ +

ώ
ὦ = 2ᾀ(ὥ,ὦ > 0)  

 

(1) 

where a and b define the curvature of the paraboloid 
in the x-z and y-z planes, respectively. Considering the 
beam propagation axis in the (x,y,z) coordinate as a 
line defined by: 
 
ώ = tan — (ᾀ ᾀ ) + ώ  
 

(2) 

the interception point and the angle of tangential and 
normal lines	in	Fig.	1(b)	are	denoted	by P,	θt,	and	θn, 
respectively. The interception point on the incident 
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plane is described in the (x,y,z) coordinate as follow: 
ὼ = 0 (3a) 
ώ = ὦ cot— + ὦ cot — + 2ὦ(ώ cot— ᾀ )  
 (3b) 
ᾀ = cot— ώ ώ + ᾀ  (3c) 

 
Note that with the assumption that the beam 

propagation axis lies on the incident plane, the 
expression ὼ = 0 is obvious. Also, it is assumed that 
the interception point is in the ᾀ < 0 andώ > 0 regions 
of coordinate. Therefore, based on the position of the 
source point coordinate and assuming that the 
incident point ὖ is fixed, — > — or — < — . Each case 
needs separate analysis then in Section	 3.1	 the	 case	
for — < —  and in Section	3.2	the	case	for	— > —  are 
investigated. 

3.  REFLECTED BEAM 
�u�ä�s�ã���E0�´�En 

Assuming— < — , the equivalent problem is 
illustrated in Figure 2. The subscript Ὥ, ὶ, and ὸ are the 
incident, reflected and refracted (transmitted) beam 
coordinates respectively and in all coordinates the ᾀ 
axis is pointing to the propagation direction and both 
the ώ and ᾀ axes lie on the incident plane where the ὼ 
axis is perpendicular to it. The coordinates are 
considered right-handed and the origins of all three 
coordinates lie atὖ. The incident angle is mentioned 
by‰ . 

From the literature the complex amplitude of a 
Gaussian	beam	can	be	written	as	[1]: 
Ὗ (ὼ ,ώ ,ᾀ ) = ὃ exp Ὦɮ (ὼ ,ώ ,ᾀ )  (4) 
where the subscript ὺ refers to one ofὭ, ὶ, and ὸ. ɮ (Ͻ)  
denotes the complex phase and has the following form 
[1]. 
 

ɮ (ὼ ,ώ ,ᾀ ) =  Ὧ ᾀ +
Ὧ
2

ὼ
ή +

ώ
ή  

(5) 
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Figure 2: Coordinates for interface, and for incident, 
reflected and refracted beams. Reference unique coordinate 
for incident, reflected and refracted beams is presented too. 

  

In	 (5), kv is	 the	wave	 number	 and	 deϐined	 by	 (6)	
and subscript S and T represent the sagittal and 
tangential planes, respectively. The parameter q will 
be defined later in the text. 

 

Ὧ =
2“ὲ

‗  (6) 

ὲ  and ‗  in	(6)	are	refractive	index	of	the	media	and	
the free space wavelength. For the rest of the paper 
we assume the refractive index of ὲ  and ὲ  on the left 
and right sides of the interface, respectively. 
By	taking	the	derivative	of	(1)	with	respect	to	z	on 

the z-y	 plane	 (x=0), the following expressions are 
obtained: 

tan — =
ὦ

ώ  (7) 

ᾀ =
0.5ώ

ὦ  
(8) 

 
Note that for the geometry in Figure 1:, 

— = — + ‰ .	Then	substituting	(7)	in	(8)	will	result	in	
the following equations. 

tan — =
ὦ

ώ  (9a) 

ᾀ = 0.5ὦ tan (— + ‰ )  
 

(9b) 

In the next step, the incident coordinate is 
transformed to a reference coordinate which will be 
used for applying boundary conditions for all beams. 
The reference coordinate is denoted by (ὼ ,ώ ,ᾀ )  and 
its origin is located at ὖ and each axis in the reference 
coordinate is parallel to the corresponding axis in the 
interface coordinate (Figure 2). Using the following 
transformation, one can convert the incident 
coordinate (ὼ ,ώ ,ᾀ )  to the reference 
coordinate(ὼ ,ώ ,ᾀ ) . 
ὼ = ὼ  (10a) 
ώ = + cos— ώ sin— ᾀ  (10b) 
ᾀ = + sin — ώ +  cos— ᾀ  (10c) 
 

On the other hand, the interface coordinate is 
converted to (ὼ ,ώ ,ᾀ )  coordinate by using: 
ὼ = ὼ  (11a) 
ώ = ώ +  ώ = ώ +  ὦ tan(— + ‰ )  (11b) 
ᾀ = ᾀ +  ᾀ = ᾀ 0.5ὦ tan (— + ‰ )  (11c) 
Substituting	(11)	in	(1)	and	solving	for	ᾀ  will yield: 

ᾀ =
ὼ
2ὥ

ώ
2ὦ ώ tan(— + ‰ )  

(12) 

Now, using the following sequence, the phase 
complex of the incident beam can be expressed in 
(ὼ ,ώ ,ᾀ )  coordinate: 
ɮ (ὼ ,ώ ,ᾀ )

 
ựựựự ɮ (ὼ ,ώ ,ᾀ )

 
ựựựự ɮ (ὼ ,ώ )  

 (13) 
Following	(13),	Φi (x1,y1) is expressed by: 
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ɮ (ὼ ,ώ ) = Ὧ ώ
sin‰

cos(— + ‰ )
+ Ὧ ὼ

1
ή

cos—
ὥ

+
Ὧ ώ

2
1

ή ×
cos ‰

cos (— + ‰ )
cos—

ὦ + Ὢ(ὼ ώ ) ,ά,ὲ ᶰ ᴚ,

ά,ὲ > 0,ά + ὲ > 2 
 (14) 
Note	 that	 in	 (14), terms with variations of ὼ and 

ώ greater than the second order are expressed in the 
summation term. 

Referring to Figure 2, the phase complex of the 
reflected beam in reflection coordinate can be 
converted to the (ὼ ,ώ ) coordinate by going through 
the sequence in (16). 
ὼ = ὼ  (15a) 
ώ = cos(‰ + ‰ + — ) ώ

+  sin(‰ + ‰ + — ) ᾀ  
(15b) 

ᾀ = sin(‰ + ‰ + — ) ώ
cos(‰ + ‰ + — ) ᾀ  

(15c) 

ɮ (ὼ ,ώ ,ᾀ )
 

ựựựự ɮ (ὼ ,ώ ,ᾀ )
 

ựựựự ɮ (ὼ ,ώ ) 

(16) 

Therefore ɮ (ὼ ,ώ )  would be: 

ɮ (ὼ ,ώ ) = Ὧ ώ
sin‰

cos(— + ‰ )

+ Ὧ ὼ
1

ή

+
cos(‰ + ‰ + — )

ὥ

+
Ὧ ώ

2
1

ή ×
cos ‰

cos (— + ‰ )

+
cos(‰ + ‰ + — )

ὦ

+ Ὣ(ὼ ώ ) ,ά,ὲ ᶰ ᴚ,

ά,ὲ > 0,ά + ὲ > 2 

 
 
 
 

(17) 

As	 in	 (14), the terms with variations of ὼ  and ώ  
greater than the second order are expressed in the 
summation term. 

Based on the electromagnetic fields theory, the 
phases of incident, reflected and refracted 
(transmitted) beams must match exactly along the 
boundary interface, which means: 
ɮ (along the interface)
= ɮ (along the interface)
= ɮ (along the interface)  

(18) 

Neglecting	 high	 variations	 in	 (14)	 and	 (17)	 and	
using	 (18),	 the	 phase	 matching	 equations	 for	 the	
incident and reflected beams can be written. 
Equations	 (14)	 and	 (17)	 are	 expressed	 in	 the same 
coordinate	and	along	the	same	interface,	so	(18)	must	
be held for all (ὼ ,ώ )  coordinates. It means that the 
coefficients of ὼ  and ώ  variables with the same order 

must be equal. Therefore, the following equations are 
obtained: 

Ὧ sin‰ = Ὧ sin ‰  (19a) 

Ὧ
1

ή
cos—

ὥ = Ὧ
1

ή

+
cos(‰ + ‰ + — )

ὥ  

(19b) 

Ὧ
2

1
ή ×

cos ‰
cos (— + ‰ )

cos—
ὦ

=
Ὧ
2

1
ή

×
cos ‰

cos (— + ‰ )

+
cos(‰ + ‰ + — )

ὦ  

(19c) 

By replacing   Ὧ = Ὧ = 2“ὲ ‗ϳ  in	(19)	and	doing	
some	simpliϐication,	(19)	becomes: 
‰ = ‰  (20a) 
1

ή =
1

ή
1
ὥ

(cos— + cos(2‰ + — ))  (20b) 

1
ή =

1
ή

cos (— + ‰ )

cos ‰

×
1
ὦ

(cos—

+ cos(2‰ + — ))  

(20c) 

The	 ϐirst	 equation	 in	 (20)	 was	 expected	 from	
optical physics and the second and third ones are the 
sagittal and tangential relations for the reflected 
beam, respectively. 

The complex beam parameter ή  is defined as: 
1
ή =

1
Ὑ Ὦ

2
Ὧ ύ  (21) 

In which Ὑ  and ύ  are the wave front radius of 
curvature and beam radius, respectively. 

5ÓÉÎÇ ςρ , ÔÈÅ ÅÑÕÁÔÉÏÎÓ ÉÎ ςπ  ÁÒÅ ×ÒÉÔÔÅÎ ÉÎ ÔÈÅ 
following form s: 
ύ = ύ  (22a) 
1

Ὑ =
1

Ὑ
1
ὥ

(cos— + cos(2‰ + — ))  (22b)  

ύ = ύ  (22c) 
1

Ὑ =
1

Ὑ
cos (— + ‰ )

cos ‰

×
1
ὦ

(cos—

+ cos(2‰ + — )) 

(22d)  

By defining a ray vector and ABCD matrix as in [1], 
ÔÈÅ !"#$ ÍÁÔÒÉØ ÆÏÒÍ ÏÆ ςχ  ÉÓ ÐÒÅÓÅÎÔÅÄ ÂÙȡ 

ύ
ύ

Ὑ

=
1 0

1
ὥ

(cos— + cos(2‰ + — )) 1

ύ
ύ

Ὑ
 

 (23a) 
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ύ
ύ

Ὑ

=
1 0

cos (— + ‰ )

cos ‰ ×
1
ὦ

(cos— + cos(2‰ + — )) 1  

ύ
ύ

Ὑ
 

 (23b)  
3.2: Ᵽ > Ᵽ▪ 

If— > — , following the same procedure in Section 
3.1	will	results	in: 

 
a) The interface coordinate conversion: 

 
ὼ = ὼ  (24a) 
ώ = ώ +  ώ = ώ + ὦ tan(— ‰ )  (24b) 
ᾀ = ᾀ +  ᾀ = ᾀ 0.5ὦ tan (— ‰ )  
 

(24c) 

b) Interface equation in the z y plane: 
 

ᾀ =
ὼ
2ὥ

ώ
2ὦ ώ tan(— ‰ )  

 

(25) 

c) The transformation equation for converting the 
reflection coordinate in to (x ,y ,z )  coordinate: 
 

ὼ = ὼ  (26a) 
ώ = cos(‰ + ‰ — ) ώ

+  sin(‰ + ‰ — ) ᾀ  
(26b) 

ᾀ = sin(‰ + ‰ — ) ώ
cos(‰ + ‰ — ) ᾀ  

(26c) 

d) The complex phase of incident and reflected beams 
in (x ,y ) coordinates: 

ɮ (ὼ ,ώ ) = + Ὧ ώ
sin ‰

cos(— ‰ )

+ Ὧ ὼ
1

ή
cos—

ὥ

+
Ὧ ώ

2
1

ή

×
cos ‰

cos (— ‰ )
cos—

ὦ

+ Ὢ(ὼ ώ ) ,ά,ὲ ᶰ ᴚ,

ά,ὲ > 0,ά + ὲ > 2 

(27) 

By	 equating	 the	 same	 order	 terms	 in	 (27)	 and	
neglecting the summation terms, the simplified form 
of boundary condition equations are obtained as 
follow: 
Ὧ sin ‰ = Ὧ sin ‰  (28a) 

Ὧ
1

ή
cos—

ὥ = Ὧ
1

ή

+
cos(‰ + ‰ — )

ὥ  

(28b) 

Ὧ
2

1
ή ×

cos ‰
cos (— ‰ )

cos—
ὦ

=
Ὧ
2

1
ή

×
cos ‰

cos (— ‰ )

+
cos(‰ + ‰ — )

ὦ  

(28c) 

The equations for ABCD matrices which are 
derived as in Section	3.1	are	presented	in	Appendix I. 

4.  REFRACTED BEAM  
4.1: Ᵽ < Ᵽ▪ 

Referring to Figure 2, the phase complex of the 
refracted beam in the refracted coordinate can be 
converted to (ὼ ,ώ ,ᾀ )  coordinate by going through 
the sequence in	(30). 

 
ὼ = ὼ  (29a) 
ώ = + cos(‰ ‰ + — ) ώ

sin(‰ ‰ + — ) ᾀ  
(29b) 

ᾀ = + sin(‰ ‰ + — ) ώ
+  cos(‰ ‰ + — ) ᾀ  

(29c) 

ɮ (ὼ ,ώ ,ᾀ )
 

ựựựự ɮ (ὼ ,ώ ,ᾀ )
 

ựựựự ɮ (ὼ ,ώ ) 
 

(30) 

Then, the complex phase of the refracted beam 
would be as the following: 

ɮ (ὼ ,ώ ) = Ὧ ώ
sin‰

cos(— + ‰ )

+ Ὧ ὼ
1

ή
cos(‰ ‰ + — )

ὥ

+
Ὧ ώ

2
1

ή

×
cos ‰

cos (— + ‰ )
cos(‰ ‰ + — )

ὦ

+ Ὤ(ὼ ώ ) ,ά,ὲ ᶰ ᴚ,

ά,ὲ > 0,ά + ὲ > 2 
 

(31) 

Neglecting the	summation	terms	in	(31)	and	using	
(18)	and	(14),	the	boundary	condition	equations	take	
the following form: 
Ὧ sin ‰ = Ὧ sin‰  (32a) 

Ὧ
1

ή
cos—

ὥ = Ὧ
1

ή
cos(‰ ‰ + — )

ὥ  

(32b) 
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Ὧ
2

1
ή ×

cos ‰
cos (— + ‰ )

cos—
ὦ

=
Ὧ
2

1
ή

×
cos ‰

cos (— + ‰ )
cos(‰ ‰ + — )

ὦ  

(32c) 

Note	 that	 the	 ϐirst	 term	 in	 (32)	 is	 Snell’s law. By 
replacing Ὧ  with  , the	equation	in	(32)	becomes: 
sin ‰ = ὲ sin ‰  (33a) 
1

ή =
1
ὲ ×

1
ή

1
ὲὥ cos—

cos(‰
+ — ) ὲ sin ‰

sin(‰ + — ) sin ‰  

(33b) 

1
ή =

ὲ cos ‰
ὲ sin ‰ ×

1
ή

ὲ cos ‰
ὲ sin ‰

×
1
ὦ cos—

cos(‰
+ — ) ὲ sin ‰

sin(‰ + — ) sin ‰  

(33c) 

where ὲ = ὲ ὲϳ . 
Note	 that	 using	 the	 ϐirst	 equation	 in	 (28),	 ‰  is 

replaced by an expression of ‰ . The equations for 
ABCD matrices are presented in Appendix I. 

By considering the condition of Brewster angle 
incidence (‰ = tan ὲ) and letting ‰  be ‰ , it is 
possible to obtain expressions for refracted beam at 
‰ = ‰ . The equations for ABCD matrices at ‰ = ‰  
are summarized in Appendix I. 

4.2: Ᵽ > Ᵽ▪ 

The procedure for this case is exactly the same as 
Section	4.1	except	that	the	following	transformation	is	
used to convert the refracted coordinate to (ὼ ,ώ ,ᾀ ) . 
ὼ = ὼ  (34a) 
ώ = + cos(‰ ‰ — ) ώ

+  sin(‰ ‰ — ) ᾀ  
(34b) 

ᾀ = sin(‰ ‰ — ) ώ
+  cos(‰ ‰ — ) ᾀ  

(34c) 

Following the mentioned method, one can derive 
the equations summarized in Appendix I. 

5.  ELLIPTIC CONVEX PARABOLOID SURFACE  

In the previous sections, it was assumed that the 
interface between mediums is in the shape of an 
elliptic concave paraboloid surface and explicit 
expressions for ABCD matrices were derived 
(Appendix I). In this section, the interface has the 
shape of an elliptic convex paraboloid surface. 

The method of obtaining ABCD matrix is the same 
as Sections 3	and	4.	However, in this case, there would 
be only one condition over — . Figure 3 depicts the 
geometry of the problem: 

t n
0

i
r

t

1y

1z1x

iy
iz

ix
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tztx

ry rz

rx

 
Figure 3: Coordinates for convex interface and for incident, 
reflected and refracted beams 
 

The interface is expressed as: 
ὼ
ὥ +

ώ
ὦ = + 2ᾀ(ὥ,ὦ > 0)  

(35) 

And if the point ὖ is fixed on the interface and the 
point Ὓ moves so that the angle of —  is changed, there 
is no realistic solution for — > — . Since for elliptic 
convex paraboloid interface — > —  then always 
— < — . Then, it is not necessary to divide the 
problem into sub-problems. 

After following the same procedure mentioned in 
Sections 3	and	4,	one	can	derive	the	explicit	equations	
of beam spot size and wave front radius of curvature 
for the sagittal and tangential planes. Also, by setting 
‰  to ‰ , it is possible to formulate the ABCD matrix of 
the refracted beam at Brewster angle. The equations 
for this section are presented in Appendix I where the 
ABCD matrixes for different geometries are 
summarized. 

2
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nt 
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er B

ea
m

 
Figure 4: Laser beam and paraboloid mirror 
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6.  STUDYING REFLECTION FROM A PARABOLOID MIRROR  

In this section, reflection of a laser beam from a 
paraboloid mirror is investigated. Assume that the 
laser is placed in front of the mirror as illustrated in 
Figure 4. 

In Figure 4, the laser is placed on the principle axis 
of the mirror and the distance between the mirror 
apex and laser beam waist is Ὠ. The tilting angle, 
Rayleigh range [1], and beam width of laser at source 
point is — , ᾀ  and ύ , respectively, and ύ and Ὑ 
denote the beam width and the radius curvature of 
the incident beam at parabolic surface. Referring to 
[3]	 and	 Figure 4, one can calculate the distance 
between the incident point and laser source ὒ . Also, it 
is possible to calculate beam waist (ύ ) and Rayleigh 
range (ᾀ ) of reflected beam (Figure 4) as follow, 
respectively [1, 24]: 

 
ύ ( , ) =

ύ

1 + “ύ ‗Ὑ( , )ϳ
ϳ  (36a) 

ᾀ ( , ) =
“ύ

‗ 1 + “ύ ‗Ὑ( , )ϳ
 

 

(36b) 

where ύ and Ὑ( , )  are beam width and radius of 
curvature at output plane of mirror respectively 
which are obtained by using the ABCD matrix for free 
space propagation and the ABCD matrix element from 
Appendix I and [1]: 

ύ =  ύ 1 +
ὒ
ᾀ  

(37a) 

1
Ὑ =

1
Ὑ

1
ὥ

[ὧέί — + ὧέί(2‰ — )]  
(37b) 

1
Ὑ =

1
Ὑ

1
ὦ ×

ὧέί (— ‰ )

ὧέί ‰
[ὧέί —

+ ὧέί(2‰ — )]  

(37c) 

where Ὑ is obtained as [1]: 
 

Ὑ = ὒ 1 +
ᾀ
ὒ  

(38) 

 
Figure 5 illustrates the variations of ύ, ύ , and ᾀ  

with respect to Ὠ. Note that to plot these results the 
first assumption at the beginning of the paper is 
considered. To satisfy this condition, the results are 
plotted if ύ Ὑ 10ϳ and ύ Ὑ 10ϳ , where Ὑ  
refers to radius curvature of the reflector. In both 
sagittal and tangential modes, it is clear that when the 
source point is located at the focal length of the mirror 
(Ὂ = 0.05 ά) the incident beam width and reflected 

beam waists are identical, and Rayleigh range gets its 
maximum which means the reflected beam is quasi-
collimated and also it is obvious that as the angle of 
tilting increases, beam width and Rayleigh range 
increase as well. So, it can be deduced that when the 
radius of curvature of the wave fronts is larger than 
beam spot size, and the principle axis of the parabola 
of revolution mirror lies in incident plane, the focal 
length of the mirror is fixed for different angles of 
incidence. 

In the cases that in specific ranges of distance and 
angle, it is necessary to find the distance and angle at 
which the Rayleigh range is maximum, Rayleigh range 
in	(36)	can	be	written	as: 

 

ᾀ ( , ) (— ,Ὠ) = ὧ
ύ + Ὢ (— ,Ὠ)

1 + ὧ ύ + Ὢ (— ,Ὠ)

×
( , )

( , )
+ Ὣ , (— ,Ὠ)

 

 (39) 
where ὧ = “ ‗ϳ  is a constant andὪ(— ,Ὠ) = ὒ . The 
function Ὣ , (— ,Ὠ)  is defined as: 
 

Ὣ (— ,Ὠ) =  
1
ὥ

[ὧέί — + ὧέί(2‰ — )]  (40a) 

Ὣ (— ,Ὠ) =  
1
ὦ ×

ὧέί (— ‰ )

ὧέί ‰
[ὧέί —

+ ὧέί(2‰ — )]  

(40b) 

 
It is possible to find the maximum of ᾀ ( , ) (— ,Ὠ)  

using different numerical methods [25-27]. Using 
Genetic algorithm [25], the maximum Rayleigh range 
is obtained for the following parameters: 

 
— = 90° 
Ὠ = 0.05 ά for 1° < — ( , ) < 90° 
— = 90° 
Ὠ = 0.05 ά for 0.1 × Ὂ < Ὠ( , ) < 2.0 × Ὂ 

 
In another calculation, the incident angle —  is set 

to 45° and the sagittal beam width of the reflected 
Gaussian beam regarding the distance up to 10 ά 
between the mirror and the beam is calculated (Figure 
6). Different values of Ὠ is considered to show the 
effect of source position on the beam width of 
reflected Gaussian beam. It is obvious that when the 
source is placed at the focal length of the mirror, the 
reflected beam is almost collimated whereas for other 
distances the beam diverges rapidly. Though this 
figure is just for sagittal plane, the same result is 
obtained for the tangential plane. 
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(a) (d) 

 
(b) (e) 

 
(c) (f) 

Figure 5: (a) Beam waist of incident beam at surface (sagittal), (b) Beam waist of reflected beam (sagittal), (c) Rayleigh range 
of reflected beam (sagittal), (d) Beam waist of incident beam at surface (tangential), (e) Beam waist of reflected beam 
(tangential), and (f) Rayleigh range of reflected beam (tangential) as a function of source distance to mirror apex. ὥ = ὦ = 0.1, 
‗ = 488ὲά, and ύ = 10‘ά. Different tilting angles are drawn with different line styles; — = 5° solid line,— = 15°dotted 
line, — = 45° dashed line, and — = 90° dash-dotted line. 
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Figure 6: Beam width of reflected beam versus the distance 
between the mirror and the beam for incident angle of ° 
and different ▀s. ▀ = .  □ solid line, ▀ = .  □ dashed 
line, and ▀ = .  □ dash-dotted line. 

7.  CONCLUSION  

The ABCD matrices of reflected and refracted 
Gaussian laser beams impinging a tilted elliptic 
concave/convex paraboloid surface have been 

obtained. The method of obtaining matrixes includes 
simplification level, converting all coordinates into a 
unique reference coordinates and applying 
electromagnetic field boundary condition on complex 
phase of the Gaussian beam. The method was applied 
to paraboloid surfaces in this text. However, by 
choosing appropriate transformation, it would be 
possible to formulate ABCD matrix for other types of 
interfaces as well. To show the application of such 
equations, a practical case which consisted of a 
parabola of revolution mirror reflecting a laser 
located on mirror principle axis, was studied. It was 
shown that sagittal and tangential planes have the 
same imaging focal length and a parabola of 
revolution mirror has the same focal length for 
different angle of tilting. 

Appendix I 

In this appendix each ABCD matrix is represented 
by Ἑ , where ό can be ὶ, ὸ, and ὦ referring to 
reflected, refracted, and refracted at Brewster angle 
beams. The subscript ὺ refers to Ὓ, or Ὕ regarding the 
sagittal or tangential plane. 

Ἑ =
1 0

1
ὥ

[cos— + cos(2‰ + — )] 1
 

Ἑ =
1 0

1
ὦ ×

cos (— + ‰ )

cos ‰
[cos— + cos(2‰ + — )] 1  

Ἑ =
1 0

1
ὲὥ cos— cos(‰ + — ) ὲ sin ‰ sin(‰ + — ) sin‰

1
ὲ

 

Ἑ =

ụ
Ụ
Ụ
Ụ
ợ ὲ sin ‰

ὲ cos‰ 0

1
ὦ ×

cos‰
ὲ sin ‰

cos— cos(‰ + — ) ὲ sin ‰ sin(‰ + — ) sin ‰
ὲ cos ‰

(ὲ sin ‰ ) Ứ
ủ
ủ
ủ
Ủ

 

Ἑ =
1 0

(1 ὲ )(cos— ὲ sin — )

ὲ(1 + ὲ )ὥ
1
ὲ

 

Ἑ =
ὲ 0

(1 ὲ )(cos— ὲ sin — )

ὲ (1 + ὲ )ὦ
1

ὲ

Note that above matrices are valid for concave 
paraboloid where — < — . One can obtain concave 
paraboloid for — > —  by changing — into — . To 
change the matrices into convex paraboloid case — , ὥ, 
and ὦ must change into — , –ὥ, and –ὦ, respectively. 
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