
133 *Corresponding author
Email address: ibrahimsvu@gmail.com

Effects of heat generation and thermal radiation on steady MHD flow 
near a stagnation point on a linear stretching sheet in porous medium 

and presence of variable thermal conductivity and mass transfer

S. Mohammed Ibrahim* and K. Suneetha

Department of Mathematics, Priyadarshini College of Engineering and Technology, Nellore, Andra Pradesh, 
India - 524004 

Article info: 
Received: 17/01/2014 
Accepted: 12/06/2014 
Online:      03/03/2015 

Abstract 
The present paper was aimed to study the effects of variable thermal conductivity 
and heat generation on the flow of a viscous incompressible electrically conducting 
fluid in the presence of a uniform transverse magnetic field, thermal radiation, 
porous medium, mass transfer, and variable free stream near a stagnation point on a 
non-conducting stretching sheet. Equations of continuity, momentum, energy, and 
mass were transformed into ordinary differential equations and solved numerically 
using shooting method. Velocity, temperature, and concentration distributions were 
numerically discussed and presented in the graphs. Skin-friction coefficient, the 
Nusselt number, and Sherwood number on the sheet were derived and discussed 
numerically. Their numerical values for various values of physical parameters were 
presented in the tables. It was found that temperature increased with increasing 
radiation parameter, R, and concentration decreased with increasing the Schmidt 
number, Sc. The numerical predications were compared with the existing 
information in the literature and a good agreement was obtained.  
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1. Introduction

In fluid dynamics, effects of external magnetic 
field on magneto hydrodynamic (MHD) flow 
over a stretching sheet are very important 
because of applications in many engineering 
problems, such as glass manufacturing, 
geophysics, paper production, and crude oil 
purification. The flow related to the stretching 
of a flat surface was first investigated by Crane 
[1]. Pavlov [2] studied the effect of external 
magnetic field on the MHD flow over a 

stretching sheet. Andersson [3] discussed the 
MHD flow of viscous fluid on a stretching 
sheet. Mukhopadhyay et al. [4] presented the 
MHD flow and heat transfer over a stretching 
sheet with variable fluid viscosity. 
Bhattacharyya and Layek [5] showed the 
behavior of solute distribution in the MHD 
boundary layer flow past a stretching sheet. 
Furthermore, many vital properties of MHD 
flow over stretching sheet have been explored 
in articles [6- 8] in the related literature.  
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The field of boundary layer flow problem over 
a stretching sheet has many industrial 
applications, such as in polymer sheet, filament 
extrusion from a dye, long thread between feed 
roll or wind-up roll, glass fiber and paper 
production, drawing of plastic films, and liquid 
films in condensation process. Due to the high 
applicability of this problem in such industrial 
phenomena, it has attracted the attentions of 
many researchers. Sakiadis [9] was the first 
who studied boundary layer flow over a 
stretching surface moving at constant velocity 
in an ambient fluid. He employed a similarity 
transformation and obtained a numerical 
solution for the problem. Erickson et al. [10] 
extended the work of Sakiadis [9] to account for 
mass transfer on the stretching surface. Tsou et 
al. [11] presented a combined analytical and 
experimental study on the flow and temperature 
field in the boundary layer on a continuous 
moving surface. Noghrehabadi et al. [12] 
studied the effect of partial slip boundary 
conditions on the flow and heat transfer of 
nanofluids past stretching sheet prescribed 
constant wall temperature. Noghrehabadi et al. 
[13] analyzed the flow and heat transfer of 
nanofluid over stretching sheet while taking 
into account particle slip and thermal 
convective boundary conditions. 
The stagnation point flows are classic problems 
in the field of fluid dynamics and have been 
investigated by many researches. These flows 
can be viscous or in viscid, steady or unsteady, 
two-dimensional or three–dimensional, normal 
or oblique, and forward or reverse. The steady 
flow in the neighborhood of a stagnation point 
was first studied by Hiemenz [14], who used a 
similarity transformation to reduce the Navier-
Stokes equations to nonlinear ordinary 
differential equations. This problem was 
extended by Homann [15] to the case of 
axisymmetric stagnation point flow. Stagnation 
point flows have been discussed by Pai [16], 
Schlichting [17], Bansal [18], Chiam [19], etc.  
Mahapatra and Gupta [20] and Nazar et al. [21] 
have investigated the heat transfer in the steady 
two-dimensional stagnation point flow of a 
viscous fluid by taking different aspects into 
account. 

Kay [22] proposed that thermal conductivity of 
liquids with low Prandtl number varied linearly 
with temperature in the range of 0 to 4000F. 
Arunachalam and Rajappa [23] considered 
forced convection in liquid metals (i.e. fluid 
with low Prandtl number) with variable thermal 
conductivity and capacity in the potential flow 
and derived an explicit closed form of 
analytical solution. Fluid flow and heat transfer 
characteristics on stretching sheet with variable 
temperature conditions were investigated by 
Grubka and Bobba [24].  Chaim [25] studied 
heat transfer in the fluid flow of low Prandtl 
number with variable thermal conductivity 
induced as a result of stretching sheet and 
compared the numerical results with the 
perturbation solution.  
Effect of thermal radiation on flow and heat 
transfer processes is of major importance in the 
design of many advanced energy conversion 
systems operating at high temperature. Thermal 
radiation within such systems occurs because of 
the emission by the hot walls and working fluid.  
Pop et al. [26] discussed the flow over 
stretching sheet near a stagnation point while 
considering thermal radiation effect. The effect 
of radiation on heat transfer problems was 
studied by Hossain and Takhar [27]. Pal [28] 
investigated heat and mass transfer in 
stagnation point flow towards a stretching 
surface in the presence of buoyancy force and 
thermal radiation. Vyas and Srivastava [29] 
presented a numerical study for the steady two-
dimensional radiative MHD boundary layer, 
with a reference to the flow of an 
incompressible, viscous, and electrically 
conducting fluid caused by a non-isothermal 
linearly stretching sheet placed at the bottom of 
a fluid saturated porous medium.  
The study of heat generation or absorption in 
moving fluids is important in the problems 
dealing with chemical reactions and those 
concerned with dissociating fluids. Possible 
heat generation effects may alter temperature 
distribution, which may influence particle 
deposition and distribution rate; hence, the 
particle deposition and distribution rate in the 
conductor wafers. The steady hydromagnetic 
laminar stagnation point flow of an 
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incompressible viscous fluid impinging on a 
permeable stretching surface with heat 
generation or absorption was analyzed by Attia 
[30]. Sharma and Singh [31] investigated the 
effects of variable thermal conductivity and 
heat source/sink on flow near a stagnation point 
on a non- conducting stretching sheet. Effects 
of variable thermal conductivity and heat 
source/sink on steady two-dimensional 
radiative MHD boundary layer flow of a 
viscous, incompressible, and electrically 
conducting fluid in the presence of variable free 
steam near a stagnation point on a non-
conducting stretching sheet was investigated by 
Al-Sudais [32]. Noghrehabadi et al. [33] 
analyzed the boundary layer heat transfer and 
entropy generation of a nanofluid over an 
isothermal linearly stretching sheet with heat 
generation/absorption. 
The objective of this study was to extend the 
work by Al-Sudais [32], considering the mass 
transfer. The governing equations were 
transformed using similarity transformation and 
the resultant dimensionless equations were 
solved numerically using the Runge-Kutta 
fourth order method by shooting technique. The 
effects of various governing parameters on the 
velocity, temperature, concentration, skin-
friction coefficient, the Nusselt number, and 
Sherwood number are shown in figures and 
tables and analyzed in detail. To the best 
knowledge of the present authors, this problem 
has not been studied before.  
 
2. Formulating the problem 

 
Fig. 1. Sketch of the physical model. 

 

Consider a steady two-dimensional flow of 
viscous incompressible electrically conducting 
fluid with variable thermal conductivity in the 
vicinity of a stagnation point on a non-
conducting stretching sheet in the presence of 
transverse magnetic field and volumetric rate of 
heat generation. The stretching sheet has 
uniform temperature, wT , and linear velocity, 

( ).wu x  It is assumed that external field is zero 
and the electric field owing to the polarization 
of charges and Hall effect is neglected. 
Stretching sheet is placed in the plane 0y   
and x-axis is taken along the sheet, as shown in 
Fig. 1. The fluid occupies the upper half plane 
i.e. 0y  . The governing equations of 
continuity, momentum, energy, and 
concentration under the influence of externally 
imposed transverse magnetic field (Bansal [18]) 
with variable thermal conductivity in the 
boundary layer are: 
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where x and y represent the coordinate axes 
along the continuous stretching surface in the 
direction of motion and normal to it, 
respectively; u and v are the velocity 
components along the x and y axes, 
respectively; p is the pressure of the fluid;   is 
the kinematic viscosity;   is electrical 
conductivity; 0B  is the magnetic field intensity; 

  is the fluid density; *K  is the permeability 
of the porous medium; pc  is the specific heat at 
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constant pressure; rq  is the radiation heat flux; 
T is the fluid temperature; T  is the fluid free 
steam temperature; wT is the fluid temperature 
of stretching sheet; C is the fluid concentration; 
C  is the fluid free stream concentration; wC  

is the fluid concentration of stretching sheet; *k  
is the variable thermal conductivity; *Q  is the 
volumetric rate of heat generation; and D is the 
molecular diffusivity of the species 
concentration. 
The second derivatives of u and T with respect 
to x are eliminated on the basis of magnitude 
analysis considering that Reynolds number is 
high. Hence, the Navier-Stokes equation is 
modified into Prandtl's boundary layer 
equation. 
In the free stream ( ) ,u U x bx  Eq. (2) is 
reduced to:  
 

2
01 BdU pU U

dx x


 


  


               (5) 

By eliminating p
x



between Eqs. (2 and 5), the 

following is obtained:  
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            (6) 
The boundary conditions for the present 
problem are: 

( )wu u x cx  ,   0v  ,     wT T ,     wC C    
at  0,y   

( )u U x bx  ,  T T ,          C C       as   
y   .                                            (7) 

 
Using the Rosseland approximation for 
radiation (Brewster [34]), the radiative heat flux 

rq  could be expressed by: 
* 4

0

4
3r

Tq
k y
 

 


                  (8) 

where *  represents the Stefan-Boltzman 
constant and 0k  is the Rosseland mean 
absorption coefficient. By assuming that the 

temperature difference within the flow is such 
that 4T  may be expanded in a Taylor series 
about T  and neglecting higher orders, the 
following is obtained: 

4 3 44 3T T T T                    (9) 
Following Arunachalam and Rajappa [23] and 
Chaim [25], thermal conductivity *k  is taken 
with the form as given below: 
 

 * 1k k                 (10) 
 
The continuity Eq. (1) is satisfied by 
introducing the stream function ( , )x y  such 
that: 
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Using Eqs. (8-11) in Eqs. (6, 3 and 4), the 
following ordinary differential equations can be 
obtained: 

 2 2 0,f ff f M f Kf              
          (12) 
 
  21 Pr Pr 0R f Q               (13) 

0Scf                                (14) 
 
where the primes denote the differentiation with 
respect to  ,   is the ratio of free stream 
velocity parameter to stretching sheet 
parameter, b is the free stream velocity 
parameter, c is the stretching sheet parameter, 
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M is the magnetic parameter, K  is the 
permeability parameter, Pr is the Prandtl 
number, R is the thermal radiation parameter, 
   is perturbation parameter, Q is the heat 
generation parameter, and  Sc is the Schmidt 
number.  
The corresponding boundary conditions are 
reduced to:  

(0) 0,f     (0) 1,f      (0) 1  ,   (0) 1   
( )f    , ( ) 0   , ( ) 0                    (15) 

 
3. Skin-friction coefficient, the Nusselt 
number and Sherwood number 
 
In practical applications, three quantities of 
physical interest are to be determined, such as 
surface shear stress,  rate of heat transfer, and 
rate of mass transfer on the surface. They may 
be obtained in terms of the skin friction 
coefficient:  
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and the local Sherwood number: 
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rate, and 
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is the surface mass 

transfer rate. 
 
4. Method of solution 
 
The governing boundary layer, thermal and 
concentration boundary layer Eqs. (12-14) with 
the boundary conditions (15) are solved using 

Runge-Kutta fourth order technique along with 
shooting method (Conte and Boor [35]). First of 
all, higher order non-linear differential Eqs. 
(12-14) are converted into simultaneous linear 
differential equations of order first and further 
transformed into initial value problem by the 
shooting technique. Once the problem is 
reduced to the initial value problem, it is solved 
using Runge-Kutta fourth order technique (Jain 
[36], Jain et al. [37], Krishnamurthy and Sen 
[38]). 
 
5. Results and discussion 
 
system of non-linear ordinary differential Eqs. 
(12-14) is solved numerically using shooting 
method for different values of magnetic field 
parameter, M, permeability of the porous 
medium, K, ratio of free stream velocity 
parameter to stretching sheet parameter,  , 
thermal radiation parameter, R, the Prandtl 
number, Pr, heat generation parameter, Q, 
perturbation parameter,  , and the Schmidt 
number, Sc. 
In order to assess the accuracy of the numerical 
method, results for (0)f   in the absence of 
magnetic field parameter (M = 0) are compared 
with those of Pop et al. [26], Mahapatra and 
Gupta [20], and Al-Sudais [32]. The first used 
Runge-Kutta fourth order method and shooting 
technique, while the second applied finite 
difference technique and Thomas algorithm; the 
last one used Runge-Kutta fourth order method 
along with shooting technique. The result of the 
comparison found a good agreement among 
them. These comparisons are shown in Table 1. 
It is seen from table 2 that the numerical values 
of (0)  in the present paper, when M = K = 
R = Q = Sc = = 0 and Pr = 0.05, are in 
agreement with those obtained by Pop et al. 
[26], Mahapatra and Gupta [20 ], and Al-sudais 
[32 ]. 
To analyze the results, numerical computations 
are carried out for variations in the governing 
parameters such as magnetic field parameter, 
M, permeability of the porous medium, K, ratio 
of free stream velocity parameter to stretching 
sheet parameter,  , thermal radiation 
parameter, R, the Prandtl number, Pr, heat 
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generation parameter, Q, perturbation 
parameter,  , and the Schmidt number, Sc. 
In the present study, the following default 
parameter values are adopted for computations: 
M = 0.1, K = 0.1, Pr = 0.71, R = 1.0, Q = 0.1, 

0.1,  0.1  ,  Sc = 0.22.  
All graphs therefore correspond to these values 
unless specifically indicated in the appropriate 
graph. 
Figure 2 represents the importance of magnetic 
field for the velocity profiles. The presence of 
transverse magnetic field parameter M is set in 
Lorentz force, which results in retarding force 
on the velocity filed. Therefore, as magnetic 
field parameter increases, so does the retarding 
force and hence the velocity profiles decreases, 
as shown in Figure 2. Figures 3 and 4 display 
the temperature and concentration profiles with 
magnetic field parameter, respectively. From 
these figures, it can be observed that both 
temperature and concentration profiles increase 
as magnetic field parameter increases. 
The effect of the permeability of porous 
medium parameter, K, on velocity, temperature, 
and concentration profiles is shown in Figs. 5-7, 
respectively. It can be observed that velocity is 
reduced as the permeability of porous medium, 
K, increases, while temperature and 
concentration enhance as the permeability of 
porous medium, K, increases, which implies 
that the resistance of the medium is decreasing 
due to the increased restriction resulting from 
decreasing porosity of the porous medium. 
Figure 8 illustrates the dimensionless 
temperature profiles for different values of the 
Prandtl number Pr. It is observed that an 
increase in the Prandtl number results in the 
decreased thickness of thermal boundary layer 
and in general lower average temperature 
within the boundary layer. The reason is that 
smaller values of the Prandtl number are 
equivalent to increasing the thermal 
conductivities; therefore, heat is able to diffuse 
away from the heated plate more rapidly than 
for higher values of Pr; in the case of smaller 
Prandtl number, as the boundary layer is 
thicker, the rate of transfer is reduced.  
Figure 9 predicts the influence of the radiation 
parameter, R, on temperature field. The 

radiation parameter, R, defines the relative 
contribution of conduction heat transfer to 
thermal radiation transfer. It is obvious that an 
increase in the radiation parameter results in 
increasing temperature within the boundary 
layer. 
Figure 10 shows the influence of the heat 
generation parameter, Q, on temperature 
profiles within the thermal boundary layer. 
From Figure 10, it is observed that the 
temperature increases with an increase in the 
heat generation parameter, Q. 
Figure 11 represents the temperature profiles 
for some values of the perturbation parameter, 
 , and for fixed values of all others. Figure 11 
represents that, with the increase in the value of 
 , temperature profiles increase the thermal 
conductivity constant, leading to lower 
approximation of the temperature profile. 
For different values of the Schmidt number, Sc, 
the concentration profile is plotted in Fig. 12. 
The Schmidt number, Sc, embodies the ratio of 
the momentum diffusivity to the mass (species) 
diffusivity. It physically relates the relative 
thickness of the hydrodynamic boundary layer 
and mass transfer (concentration) boundary 
layer. As the Schmidt number, Sc, increases, the 
concentration decreases, which causes the 
concentration buoyancy effects to decrease and 
yield a reduction in the fluid velocity. The 
reduction in the concentration profiles is 
accompanied by simultaneous reductions in the 
concentration boundary layers, which is evident 
in Fig. 12. 
Figure 13 depicts the ratio of free steam 
velocity parameter to stretching sheet 
parameter,  in velocity profiles. It is clear that 
the velocity profiles increase with an increase in 
the values of parameter  . Figures 14 and 15 
show the temperature and concentration profiles 
for different values of the ratio of free steam 
velocity parameter to stretching sheet 
parameter,  . It is observed in Figs. 14 and 15 
that fluid temperature and concentration 
decreases due to increased . 
Effects of various governing parameters on the 
skin-friction coefficient, fC , the Nusselt 
number, Nu, and the Sherwood number, Sh, are 
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shown in Tables 3 and 4. It can be noticed that, 
as magnetic parameter M or permeability 
parameter K increase, the skin-friction 
coefficient increases and both Nusselt number 
and Sherwood number decrease. As   
increases, skin-friction coefficient is reduced, 
while the Nusselt number and Sherwood 
number increase. The Nusselt number increases 
 

as the Prandlt number increases, while Nusselt 
number   is   reduced   as  thermal    radiation 
parameter, R, heat generation parameter, Q, or 
perturb bation parameter,  , increases. It is 
seen that the Sherwood number increases as an 
increase in the Schmidt number, Sc. 
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Fig. 2. Velocity Profiles for different values of M. 
 

 Fig. 3. Temperature profiles for different values 
of M. 
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Fig. 4. Concentration profiles for different values 
of M. 

 Fig. 5. Velocity profiles for different values of K. 
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Fig. 6. Temperature profiles for different values of 
K. 
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 Fig. 7. Concentration profiles for different values 
of K. 
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Fig. 8. Temperature profiles for different values of 
Pr. 

 Fig. 9. Temperature profiles for different values 
of R. 
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Fig. 10. Temperature profiles for different values 
of Q. 

 Fig. 11. Temperature profiles for different values of
 . 
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Fig. 12. Concentration profiles for different values 
of Sc. 

 Fig. 13. Velocity profiles for different values of 
 . 
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Fig. 14. Temperature profiles for different values 
of  . 

 Fig. 15. Concentration profiles for different 
values of  . 

 
Table 1. Comparison of skin-friction coefficient (0)f   for different values of  and M = 0.0. 

 
  

(0)f   
Pop et al. [26 ] Mahapatra and Gupta 

[20] 
Al-sudais [32 ] Present paper  

0.1 -0.9694 -0.9694 -0.969705 -0.969385 
0.2 -0.9181 -0.9181 -0.918349 -0.9181065 
0.5 -0.6673 -0.6673 -0.6674611 -0.667261 
2.0 2.0174 2.0175 2.01728138 2.0174904 

 
Table 2. Comparison of the Nusselt number (0)   for different values of   when

0.0, Pr 0.05M Q R      . 
 
  

(0)   
Pop et al. [26] Mahapatra and Gupta 

[20] 
Al-sudais [ 32] Present paper  

0.1 0.081 0.081 0.080547 0.081241 
0.5 0.135 0.136 0.135358 0.135575 
2.0 0.241 0.241 0.241025 0.241029 
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Table 3.  Numerical values of the skin-friction coefficient, Nusselt number and Sherwood number for Pr = 0.71, 
R = 1.0, Q = 0.1, 0.1  , Sc = 0.22. 

M K   fC  Nu Sh 

0.1 0.1 0.1 -1.0602 0.268904 0.281977 
0.3 0.1 0.1 -1.13321 0.262853 0.279277 
0.5 0.1 0.1 -1.20198 0.257454 0.276908 
0.1 0.3 0.1 -1.15376 0.257789 0.276929 
0.1 0.5 0.1 -1.2398 0.248276 0.272698 
0.1 0.1 0.3 -0.934202 0.304593 0.299526 
0.1 0.1 0.5 -0.747837 0.344163 0.320372 

 

Table 4.  Numerical values of the skin-friction coefficient, Nusselt number and Sherwood number for M = 0.1, 

K = 0.1, 0.1.    

Pr R Q   Sc 
fC  Nu Sh 

0.71 1.0 0.1 0.1 0.22 -1.0602 0.268904 0.281977 
1.0 1.0 0.1 0.1 0.22 -1.0602 0.306422 0.281977 
2.0 1.0 0.1 0.1 0.22 -1.0602 0.45044 0.281977 
0.71 2.0 0.1 0.1 0.22 -1.0602 0.241735 0.281977 
0.71 3.0 0.1 0.1 0.22 -1.0602 0.229604 0.281977 
0.71 1.0 0.3 0.1 0.22 -1.0602 0.147114 0.281977 
0.71 1.0 0.5 0.1 0.22 -1.0602 0.0723633 0.281977 
0.71 1.0 0.1 0.3 0.22 -1.0602 0.236927 0.281977 
0.71 1.0 0.1 0.5 0.22 -1.0602 0.20495 0.281977 
0.71 1.0 0.1 0.1 0.6 -1.0602 0.268904 0.434922 
0.71 1.0 0.1 0.1 0.94 -1.0602 0.268904 0.566934 

 
 
6. Conclusions 
 
In the present investigation, the effect of mass 
transfer on MHD mixed convection of steady 
fluid flow along a stretching sheet with variable 
thermal conductivity was studied in a porous 
medium with heat generation and thermal 
radiation. The governing boundary layer 
equations were transformed into a non-
dimensional form and the resulting nonlinear 
system of partial differential equations was 
reduced to local non-similarity boundary layer 
equations, which were solved numerically using 
Runge-Kutta fourth order technique along with 
shooting method. It can be drawn from the 
present results that, when radiation parameter 
increased, the heat transfer rate at the sheet 
decreased. It is seen that the Sherwood number 
increased as an increase in the Schmidt number. 
Also, the boundary layer flows were greatly 
influenced by the Prandtl number; as the 

Prandtl number increased, the sheet temperature 
gradients also increased. However, the 
temperature profiles decreased when the Prandtl 
number increased. Fluid velocity profiles 
decreased, whereas temperature and 
concentration profiles increased with an 
increase in magnetic field parameter. 
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