Journal of Computational & Applied Research in Mechanical Engineering (JCARME)
مقالات آماده انتشار ، پذیرفته شده، انتشار آنلاین از تاریخ 24 آبان 1404 اصل مقاله (1.12 M )
نوع مقاله: Research Paper
شناسه دیجیتال (DOI): 10.22061/jcarme.2025.12184.2660
نویسندگان
Ali Mehrvar* 1 ؛ Alireza Mirak 2 ؛ Mohsen Motamedi 1
1 Department of Mechanical Engineering, Shahreza Campus, University of Isfahan, Iran
2 Faculty of Materials Engineering, Iran University of Science and Technology, Tehran, Iran
تاریخ دریافت : 06 تیر 1404 ،
تاریخ بازنگری : 12 آبان 1404 ،
تاریخ پذیرش : 24 آبان 1404
چکیده
Electrochemical machining (ECM) is an effective method for machining CMSX-4 superalloy, a single-crystal nickel-based superalloy, due to its unique performance in metal machining. The microstructure of this superalloy consists of three phases: gamma (γ), gamma prime (γ'), and carbide. The gamma prime phase is distributed cubically and homogeneously in the gamma field without any boundaries. It is essential to maintain this microstructure after the production process. In the present study, ECM was performed on a CMSX-4 superalloy workpiece. The microstructure of the workpiece was then investigated before and after ECM using scanning electron microscopy and energy-dispersive spectroscopy analysis from two sides. The results showed that no changes were observed in the CMSX-4 microstructure after ECM process. The single-crystal structure and the distribution of the gamma prime phase were maintained after this machining process, indicating that ECM is an effective machining method for CMSX-4 superalloy without compromising its critical microstructural features.
کلیدواژهها
Electrochemical machining ؛ CMSX-4 ؛ Microstructure ؛ SEM ؛ EDS
مراجع
[1] T. Bergs and S. Harst, “Development of a process signature for electrochemical machining”. CIRP Ann., Vol. 69, No. 1, pp. 153-156, (2020).
[2] A. Mehrvar, M. Motamedi and A. Jamalpour, “Modeling of Jet Electrochemical Machining Using Numerical and Design of Experiments Methods”, Sci. Iran. , Vol. 31, No. 20, pp. 1880-1888, (2024).
[3] G. Wang, Y. Zhang, H. Li, et al., “Ultrasound-Assisted Through-Mask Electrochemical Machining of Hole Arrays in ODS Superalloy”, Materials , Vol. 13, No. 24, p. 5780, (2020).
[4] A. Mehrvar, A. Basti and A. Jamali, “Inverse modelling of electrochemical machining process using a novel combination of soft computing methods”, P. I. Mech. Eng. C-J Mec , Vol. 234, No. 17, pp. 3436-3446, (2020).
[5] P.B. Tailor, A. Agrawal and S. S. Joshi, “Evolution of electrochemical finishing processes through cross innovations and modelling”, Int. J. Mach. Tool. Manu , Vol. 66, pp. 15–36, (2013).
[6] A. Mehrvar, A. Basti and A. Jamali, “Optimization of electrochemical machining process parameters: Combining response surface methodology and differential evolution algorithm”, P. I. Mech. Eng. E-J. Pro, Vol. 231, No. 6, pp.1114-1126, (2016).
[7] A. Mehrvar, A. Basti and A. Jamali, “Modelling and parameter optimization in electrochemical machining process: application of dual response surface-desirability approach”, Lat. Am. Appl. Res, Vol. 47, No. 4, pp. 157-162, (2017).
[8] S. K. Vaiyapuri, A. Moganraj, et al., “Development of thermal barrier coating on single crystal superalloy CMSX-4 by two-source evaporation EB-PVD and hot corrosion performance of the coating in a simulated aero-engine environment”, Surf. Coat. Technol. , Vol. 485, p. 130885, (2024).
[9] M. Ramsperger, R.F. Singer and C. Körner, “Microstructure of the nickel-base superalloy CMSX4 fabricated by selective electron beam melting”, Metall. Mater. Trans. A, Vol. 47, pp. 1469-1480, (2016).
[10] X. Yu, W. Xuan, et al., “An insight into the creep failure mechanism of sliver defect in the second-generation nickel-based single crystal superalloy CMSX-4”, Eng. Fract. Mech., Vol. 307, p. 110307, (2024).
[11] T. Cheng, Y. Wang, et al., “Effect of solidification direction on microstructure and mechanical property of single crystal superalloy CMSX-4”, Mater. Charact., Vol. 202, p. 112992, (2023).
[12] A. Paraschiv, G. Matache and C. Puscasu, “The effect of heat treatment on the homogenization of CMSX-4 single-crystal Ni-based superalloy”, Transport. Res. Procedia, Vol. 29 pp. 303-311, (2018).
[13] B. Yin, G. Xie, X. Jiang, et al., “Microstructural Instability of an Experimental Nickel-Based Single-Crystal Superalloy”, Acta Metall. Sin. Engl. Lett, Vol. 33, pp. 1433–1441, (2020).
[14] A. Mehrvar and A. Mirak, “Comparative evaluation of surface integrity of CMSX-4 nickel-based superalloy after grinding, wire electrical discharge machining, and electrochemical machining processes”, J. Mater. Eng. Perform., Vol. 33, pp. 2616–2622, (2024).
[15] A. Mehrvar, A. Mirak and M. Rezaei, “Numerical and Experimental Investigation of Electrochemical Machining of Nickel-Based Single Crystal Superalloy”, Modares Mechanical Engineering, Vol. 20, No. 7, pp. 1873-1881, (2020).
[16] A. Mehrvar, M. Motamedi and A. Mirak, “Modeling of electrochemical machining of nickel-based single crystal super alloy by combining numerical and design of experiments methods”, J Solid Fluid Mech , Vol. 10, No. 3, pp. 207-217, (2020).
[17] F. Klocke, M. Zeis, A. Klink, et al., “Experimental research on the electrochemical machining of modern titanium- and nickel-based alloys for aero engine components”, Procedia CIRP , Vol. 6, pp. 368-372, (2013).
[18] F. Scherillo, A. Astarita, U. Prisco, et al., “Selective electrochemical machining of the steel molds in hot isostatic pressing of Ti6Al4V powder”, Mater. Manuf. Process , Vol. 33, No. 14, pp. 1587–1593, (2018).
[19] S. Niu, N. Qu, S. Fu, et al., “Investigation of inner-jet electrochemical milling of nickel-based alloy GH4169/Inconel 718” Int. J. Adv. Manuf. Technol, Vol. 93, pp. 2123-2132, (2017).
[20] A. Zhang, Z. Xu, J. Lu, et al., “Improvement of blade platform accuracy in ECM utilizing an auxiliary electrode”, Mater. Manuf. Process, Vol. 35, No. 9, pp. 951-960, (2020).
[21] Z. Xu, L. Sun, Y. Hu, et al., “Flow field design and experimental investigation of electrochemical machining on blisk cascade passage”, Int. J. Adv. Manuf. Technol, Vol. 71, pp. 459–469, (2014).
[22] B. Mouliprasanth and P. Hariharan, “Scale effects and a method to evaluate similarity in electrochemical micromachining of Nitinol”, Mater. Manuf. Process , Vol. 36, No. 1, pp. 39-47, (2020).
[23] Y. Ge, Z. Zhu and D. Wang, “Electrochemical dissolution behavior of the nickel-based cast superalloy K423A in NaNO3 solution”, Electrochim. Acta , Vol. 253, pp. 379–389, (2017).
[24] F. Wang, J. Yao and M. Kang, “Electrochemical machining of a rhombus hole with synchronization of pulse current and low-frequency oscillations”, J. Manuf. Processes, Vol. 57, pp. 91–104, (2020).
[25] D.S. Bilgi, V.K. Jain, R. Shekhar, et al., “Electrochemical deep hole drilling in super alloy for turbine application”. J. Mater. Process. Tech, Vol. 149, No. 1-3, pp. 445–452, (2004).
[26] Y. Wang, Z. Xu, J. Liu, et al., “Study on flow field of electrochemical machining for large size blade”, Int. J. Mech. Sci. , Vol. 190, p. 106018, (2021).
[27] S.F. Huang and Y. Liu. “Electrochemical micromachining of complex shapes on nickel and nickel-Based superalloys”, Mater. Manuf. Process , Vol. 29, No. 11-12, pp. 1483-1487, (2014).
[28] M. Burger, L. Koll, E.A. Werner, et al., “Electrochemical machining characteristics and resulting surface quality of the nickel-base single-crystalline material LEK94”, J. Manuf. Processes, Vol. 14, No. 1, pp. 62–70, (2012).
[29] A. Singh, S. Anandita and S. Gangopadhyay, “Microstructural Analysis and Multi Response Optimization during ECM of Inconel 825 Using Hybrid Approach”, Mater. Manuf. Process , Vol. 30, No. 7, pp. 842-851, (2015).
[30] Y. Wang, Z. Xu, J. Hu, et al., “Surface integrity analysis of electrochemical machining of γ-TiAl alloys”, Mater. Today Commun. , Vol. 25, p. 101686, (2020).
آمار
تعداد مشاهده مقاله: 5
تعداد دریافت فایل اصل مقاله: 5