Journal of Electrical and Computer Engineering Innovations (JECEI)
مقاله 18 ، دوره 14، شماره 1 ، مهر 2026، صفحه 241-250 اصل مقاله (1.31 M )
نوع مقاله: Original Research Paper
شناسه دیجیتال (DOI): 10.22061/jecei.2025.12218.861
نویسندگان
Abolfazl Bijari* ؛ Sara Nooki
Faculty of Electrical and Computer Engineering, University of Birjand, Birjand, Iran.
تاریخ دریافت : 12 تیر 1404 ،
تاریخ بازنگری : 13 شهریور 1404 ،
تاریخ پذیرش : 19 مهر 1404
چکیده
Background and Objectives: Accurate measurement of moisture content (MC) in wheat grains is vital for quality control and storage management. This study presents the development of a differential microwave sensor with enhanced sensitivity for detecting MC in wheat grains, leveraging resonant techniques to improve detection precision.Methods: The proposed sensor utilizes two identical half-wavelength (λ/2) microstrip resonators symmetrically coupled to a standard 50Ω transmission line. One resonator serves as a reference with a relative permittivity (έr) of 1, while the second is exposed to the sample under test (SUT), where έr > 1. This differential structure enables the identification of dielectric property changes due to moisture variation. The operating principles are theoretically analyzed using even- and odd-mode techniques.Results: The proposed sensor exhibits three distinct transmission zeros (TZs) within the 0.1–2 GHz frequency range, which arise from the harmonic behavior of the resonators. A prototype was fabricated on a low-cost, compact substrate with dimensions of 6 × 4.5 × 0.16 cm³ and was experimentally tested, confirming the simulation results. The sensor demonstrates a high normalized sensitivity of 7.63%.Conclusion: The developed differential microwave sensor demonstrates strong potential for precise and reliable MC detection in wheat grains. Its compact design, cost-effectiveness, and high sensitivity make it a suitable candidate for practical agricultural and food monitoring applications.
کلیدواژهها
Differential Measurement ؛ Moisture Content (MC) ؛ Sensor ؛ Microstrip ؛ Transmission Zero
مراجع
[1] R. Keshavarz, J. Lipman, D. M.-P. Schreurs, N. Shariati, "Highly sensitive differential microwave sensor for soil moisture measurement," IEEE Sens. J., 21(24): 27458–27464, 2021.
[2] I. H. D. Belitz, W. Grosch, Food Chemistry. Berlin, Germany: Springer, 2013.
[3] R. N. Pereira, J. G. D. Júnior, M. E. T. S. Praxedes, K. C. Cabral, V. P. da Silva Neto, A. G. D’Assunção, "A planar DGS sensor for moisture analysis in civil construction aggregates," Sens. Actuators A Phys., 367: 115042, 2024.
[4] A. Beniwal, D. A. John, R. Dahiya, "PEDOT: PSS-based disposable humidity sensor for skin moisture monitoring," IEEE Sens. Lett., 7(3): 1–4, 2023.
[5] Y. I. Abdulkarim et al., "Utilization of a triple hexagonal split ring resonator (SRR) based metamaterial sensor for the improved detection of fuel adulteration," J. Mater. Sci.: Mater. Electron., 32(19): 24258–24272, 2021.
[6] L. Ali, G. Wang, F. Meng, X. Ding, K. K. Adhikari, C. Wang, "MXene-coated planar microwave resonator sensor for ultrasensitive humidity monitoring," IEEE Microw. Wireless Technol. Lett., 33(11): 1572–1575, 2023.
[7] S. S. Olokede, M. Chu, M. L. Neyestanak, M. Daneshmand, H. E. Naguib, "Non-recovery moisture sensor for breach integrity using the degenerate mode of planar microwave ring resonator," Sens. Actuators A Phys., 328: 112775, 2021.
[8] O. Altintas, M. Aksoy, E. Unal, F. Karakasli, M. Karaaslan, "A split meander line resonator-based permittivity and thickness sensor design for dielectric materials with flat surface," J. Electron. Mater., 47: 6185–6192, 2018.
[9] M. Bakır et al., "High sensitive metamaterial sensor for water treatment centres," Water Air Soil Pollut., 230: 1–9, 2019.
[10] D. K. Ghodgaonkar, V. V. Varadan, V. K. Varadan, "A free-space method for measurement of dielectric constants and loss tangents at microwave frequencies," IEEE Trans. Instrum. Meas., 38(3): 789–793, 1989.
[11] F. Lu, Q. Tan, Y. Ji, Q. Guo, Y. Guo, J. Xiong, "A novel metamaterial inspired high-temperature microwave sensor in harsh environments," Sensors, 18(9): 2879, 2018.
[12] S. Jain, P. K. Mishra, V. V. Thakare, J. Mishra, "Microstrip moisture sensor based on microstrip patch antenna," Prog. Electromagn. Res. M, 76: 177–185, 2018.
[13] N. Javanbakht, G. Xiao, R. E. Amaya, "Portable microwave sensor based on frequency-selective surface for grain moisture content monitoring," IEEE Sens. Lett., 5(11): 1–4, 2021.
[14] H. K. Mun, K. Y. You, M. N. Dimon, "Rice grain moisture determination using microstrip wide-ring and microstrip coupled-line sensors," Am. J. Appl. Sci., 12(2): 112–120, 2015.
[15] A. Kapoor, P. K. Varshney, M. J. Akhtar, "Interdigital capacitor loaded electric-LC resonator for dielectric characterization," Microw. Opt. Technol. Lett., 62(9): 2835–2840, 2020.
[16] M. Shahbandeh "Worldwide production of grain in 2024/25," Statista, [Online].
[17] J. S. Hong, M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, 2nd ed. Hoboken, NJ, USA: Wiley, 2011, pp. 7–28.
[18] V. K. Tripathi, "Asymmetric coupled transmission lines in an inhomogeneous medium," IEEE Trans. Microw. Theory Techn., 23(9): 734–739, 1975.
[19] S. Kal, D. Bhattacharya, N. B. Chakraborti, "Normal-mode parameters of microstrip coupled lines of unequal width (Short Paper)," IEEE Trans. Microw. Theory Techn., 32(2): 198–200, 1984.
[20] I. J. Bahl, S. S. Stuchly, "Analysis of a microstrip covered with a lossy dielectric," IEEE Trans. Microw. Theory Techn., 28(2): 104–109, 1980.
[21] K. E. Ileleji, A. A. Garcia, A. R. Kingsly, C. L. Clementson, "Comparison of standard moisture loss-on-drying methods for the determination of moisture content of corn distillers dried grains with solubles," J. AOAC Int., 93(3): 825–832, 2010.
[22] A. Ebrahimi, J. Scott, K. Ghorbani, "Differential sensors using microstrip lines loaded with two split-ring resonators," IEEE Sensors J., 18(14): 5786–5793, 2018.
[23] A. Ebrahimi, J. Scott, K. Ghorbani, "Transmission lines terminated with LC resonators for differential permittivity sensing," IEEE Microw. Wireless Compon. Lett., 28(12): 1149–1151, 2018.
[24] A. Ebrahimi, G. Beziuk, J. Scott, K. Ghorbani, "Microwave differential frequency splitting sensor using magnetic-LC resonators," Sensors, 20( 4): 1066, 2020.
[25] P. K. Varshney, A. Kapoor, M. J. Akhtar, "Highly sensitive ELC resonator based differential sensor," IEEE Trans. Instrum. Meas., 70: 1–10, Art no. 8004710, 2021.
[26] W. J. Wu, W. S. Zhao, "A differential microwave sensor loaded with magnetic-LC resonators for simultaneous thickness and permittivity measurement of material under test by odd- and even-mode," IEEE Sensors J., 23(12): 12808–12816, 2023.
[27] S. Jiang, G. Liu, M. Wang, Y. Wu, J. Zhou, "Design of high-sensitivity microfluidic sensor based on csrr with interdigital structure," IEEE Sensors J., 23(16): 17901–17909, 2023.
[28] Z. Li, S. Tian, J. Tang, W. Yang, T. Hong, H. Zhu, "High-sensitivity differential sensor for characterizing complex permittivity of liquids based on LC resonators," Sensors, 24(15): 4877, 2024.
[29] M. T. Khan, X. Q. Lin, A. M. Khan, Z. Chen, “Sensitivity enhancement for moisture content detection using modified microstrip patch antennas,” AIP Advances, 14(5): 055219, 2024.
[30] J. Yeo, J. I. Lee, “Design of a high‑sensitivity microstrip patch sensor antenna loaded with a defected ground structure based on a complementary split ring resonator,” Sensors, 20(24), Art. no. 7064, 2020.
[31] C. G. Malmberg, A. A. Maryott, "Dielectric constant of water from 0 to 100 C," J. Res. National Bureau Standards, 56(1): 1-8, 1956.
آمار
تعداد مشاهده مقاله: 247
تعداد دریافت فایل اصل مقاله: 57