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Electrical energy can be harvested from the vibrations of piezoelectric plates. 

The behavior of the piezoelectric plate is simulated using electromechanical 

coupling. Given the large strain experienced by the flexible plate, the linear 

theory is inadequate; therefore, the effect of Von Karman strain must be 

considered. This paper investigates and validates the vibrational behavior of a 

piezoelectric nonlinear plate. Specifically, it employs coupled equations for a 

multilayered plate, incorporates Von Karman’s nonlinear strain, and applies 

Mindlin’s first-order shear deformation theory. The electrical response is 

obtained through finite element analysis of the piezoelectric nonlinear plate in 

Matlab. Different boundary conditions are considered to verify the results, 
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circuit case under harmonic excitation is presented. Furthermore, the 
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1. Introduction  

 
Energy harvesting from the vibration of 

piezoelectric structures has garnered significant 

attention in recent years. Hausler et al. 

0investigated the first test results of the energy 

harvesting from piezoelectric materials. 

Lallart et al. 0presented the technique of self-

tuning including automatic frequency actuation 

and detection that a technique of tuning stiffness 

uses to change the frequency of the piezoelectric 

harvester to set the source vibrations. Erturk and 

Inman 0 studied energy harvesting in 

piezoelectric beam. In the paper, Euler-

Bernoulli, Rayleigh, and Timoshenko beam 

theories was be used in the assumed-modes 

method. Erturk and Inman 0presented the 

mathematical model of piezoelectric beam for 

harvester.  
These piezoelectric energy harvesters can 
predict the coupled dynamics behaviour. Erturk 
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0proposed the analytical solution of an energy 
harvesting piezoelectric beam under the 
excitation of harmonic base. This method of 
solution presented the accurate result of 
piezoelectric harvester behavior.  
Finite element method was applied to the 
simulation of piezoelectric materials behavior in 
variable researches. Jabbari et al. 0proposed 
modeling of a harvester using a piezoelectric 
multilayer beam. They presented a numerical 
and experimental method for harvesting energy 
from a piezoelectric multilayer nonlinear beam 
under harmonic loading. 
The element of smart structure was presented by 
Bucalem and Kogl 0. Then the element was 
applied by Lazarus and Crawley. Bendigeri et al. 
0presented the finite element model of the 
piezoelectric material. A hexahedral element of 
eight noded was applied to the coupling behavior 
of the electromechanical structure.  
In this study, the piezoelectric property effects 
were presented by a finite element model. Sebald 
et al. 0 presented a technique that excite the 
jumping systems to the solution of high 
amplitude in the harvester of piezoelectric 
broadband. Piefort and Preumont 0used shell 
element of Mindlin as the piezoelectric 
structures.  
Erturk and Inman 0studied the response of 
chaotic on high energy orbit for an oscillator of 
duffing and the coupling of electro-mechanical. 
Van den Ende 0has developed the formulation 
for the mechanical and piezoelectric properties 
of lead-zirconate-titanate and LCR.  
The polymer piezoelectric property is greatly 
affected by temperature. This materials present 
proper processing ability for the conditions of 
high temperature. The excellent thermal 
resistances of polymers make those a proper 
material for application of industrial.  
Brian et al. 0investigated piezoelectric materials. 
They showed when stress is applied to 
piezoelectric structure, this material produces 
the voltage of self actuated. Jabbari et al. 
0investigated the simulation and test results of 
vibration analysis of a piezoelectric cantilever 
beam.  
In the paper, the effect of piezoelectric on the 
electric and dynamic responses was obtained. 
Then the velocity effect and the concentrated 
mass position on the electric response were 
studied. Ng and Lio 0  presented the behavior of 
a unimorph cantilever harvester connected to 
piezoelectric element in the parallel and series 
conditions.  

Lazarus et al. 0proposed the numerical method 
for the vibration of piezoelectric beam and 
NEMS. Xu et al. [17, 18] applied the coefficient 
of ‘33’mode for piezoelectric harvester. In the 
paper, it was presented that the electrical power 
for “31” mode is more than the “31” mode 
piezoelectric coefficient. 
Kaltenbacher 0researched numerical model for 
the hysteresis loops of polarization field and 
butterfly curve of piezoelectric structures. 
Bintang and Yudong 0showed the modeling of 
piezoelectric nonlinear actuator and the 
properties of piezoelectric actuator. Jabbari 
0proposed increasing the performance of energy 
harvesting in vibration mode shapes.  
They presented a method of design for the 
harvester of a cantilever piezoelectric beam. In 
this method, they apply the segmented electrode 
avoided the voltage cancellations in the 
vibrations. Kong et al. 0investigated the 
electromechanical coupling the delivering load 
to the impedance and complex load.  
It was presented that 75% efficiency should be 
expressed to the conjugate coupling loads with 
the frequency of narrow band. Xu et al. 0 
proposed the energy harvester using a multilayer 
stack of PZT. In the work, it was applied the “33” 
mode of a piezoelectric harvester.  
They presented that the capacitance property and 
multilayer piezoelectric structure depend on the 
dynamic behavior. Nurettin Sezer and Muammer 
0presented a comprehensive review on the state-
of-the-art of piezoelectric energy harvesting.  
The piezoelectric energy conversion principles 
were delineated, and the working mechanisms 
and operational modes of piezoelectric 
generators were elucidated. Xiaotian Zheng et 
al. 0 presented a comprehensive review of state-
of-the-art advances in piezoelectric wind energy 
harvesters (PWEH).  
Han et al. 0 introduce flexible amorphous thin-
film energy harvesters based on perovskite 
CaCu3Ti4O12 (CCTO) thin films on a plastic 
substrate for highly competitive 
electromechanical energy harvesting.  
Givois et al. 0  investigated the nonlinear 
resonant behavior of piezoelectric plates through 
experimental analysis, focusing on how 
geometric nonlinearities affect the vibrational 
and electromechanical responses of these plates. 
Shariati et al.0 showed that the damping 
coefficient is responsible of the bifurcation point 
variation, while the amplitude response depends 
on the term of the natural frequency. 
The previous studies related to the current 
research are prepared in a Table 1. 

https://www.sciencedirect.com/topics/physics-and-astronomy/windpower-utilization
https://www.sciencedirect.com/topics/engineering/harvester
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Table 1. The previous studies. 

Ref. Authors/year Aim of research 

1 Hausler et 
al./1984. 

the first test results of the energy 
harvesting from piezoelectric materials 

2 Lallart et 
al./2010 

technique of self-tuning including 
automatic frequency actuation and 
detection 

3, 
4 

Erturk and 
Inman/2010,2
011 

the mathematical model of piezoelectric 
beam for harvester 

5 Erturk/2009 the analytical solution of an energy 
harvesting piezoelectric beam 

6 Jabbari et 
al./2017 

modeling of a harvester using a 
piezoelectric multilayer beam 

7 Bucalem and 
Kogl/2005 

The element of smart structure 

8 Bendigeri et 
al./2011 

the finite element model of the 
piezoelectric material 

9 Sebald et 
al./2011 

a technique that excite the jumping 
systems to the solution of high 
amplitude in the harvester of 
piezoelectric broadband 

10 Piefort and 
Preumont/200
0 

shell element of Mindlin as the 
piezoelectric structures 

11 Erturk and 
Inman/2011 

the response of chaotic on high energy 
orbit for an oscillator of duffing and the 
coupling of electro-mechanical 

12 Van den 
Ende/2007 

the formulation for the mechanical and 
piezoelectric properties of lead-
zirconate-titanate and LCR 

13 Brian et 
al./2005 

Investigation of piezoelectric materials 

14 Jabbari et 
al./2015 

the simulation and test results of 
vibration analysis of a piezoelectric 
cantilever beam 

15 Ng and 
Lio/2005 

the behavior of a unimorph cantilever 
harvester connected to piezoelectric 
element 

16 Lazarus et 
al./2012 

the numerical method for the vibration 
of piezoelectric beam and NEMS 

17 
18 

NEMS . Xu et 
al./2012,2013 

the coefficient  of ‘33’mode for 
piezoelectric harvester. 

19 Kaltenbacher/
2010 

numerical model for the hysteresis loops 
of polarization field 

20 Bintang and 
Yudong/2012 

the modeling of piezoelectric nonlinear 
actuator 

21 Jabbari/2017 increasing the performance of energy 
harvesting in vibration mode shapes 

22 Kong et 
al./2010 

the electromechanical coupling the 
delivering load to the impedance and 
complex load 

23 Xu et al./2013 the energy harvester using a multilayer 
stack of PZT 

24 Muammer/202
1 

a comprehensive review on the state-of-
the-art of piezoelectric energy 
harvesting 

25 Xiaotian 
Zheng et 
al./2023 

a comprehensive review of state-of-the-
art advances in piezoelectric wind 
energy harvesters 

26 Han et 
al./2024 

flexible amorphous thin-film energy 
harvesters based on perovskite 
CaCu3Ti4O12 (CCTO) thin films 

27 Givois et 
al./2020 

the nonlinear resonant behavior of 
piezoelectric plates through 
experimental analysis 

28 Shariati et 
al./2021 

the damping coefficient is responsible 
of the bifurcation point variation, while 
the amplitude response depends on the 
term of the natural frequency 

In this research, the electrical response of the 
open circuit case in harmonic excitation and 

energy harvesting in resonance excitation are 
obtained. Also the increasing of energy 
harvesting performance is presented by using the 
separated electrodes.  
In the paper, the Mindlin theory for the Von 
Karman strain and the first order shear 
deformation for nonlinear geometry are applied 
(Fig. 1). 
  

 
 

Fig. 1. The algorithm of finite element method. 

 
2. Theoretical formulation 
 
The Mindlin theory is applied to analyze thick 
plates. This theory assumes that the in-plane 
displacement varies linearly through the 
thickness, and the transverse displacement 
remains constant. Unlike classical plate theory, 
the Mindlin theory accounts for shear 
deformation; therefore, a normal plane on the 
plate surface remains plane after deformation, 
but is not necessarily normal to the deformed 
mid-surface. The displacement field in the 
Mindlin theory is defined as follows:

o x

o y

o

u(x, y, z, t) u (x, y, t) z (x, y, t)

v(x, y, z, t) v (x, y, t) z (x, y, t)

w(x, y, z, t) w (x, y, t)

= − 

= − 

=
       (1) 

Where u, is displacement along x axis, v, 
displacement along y axis and w, displacement 
along z axis, uo, vo and wo, midplane 
displacement, θx and θy, rotation of y and x axis, 
respectively (Fig. 2). 

Finite Element method 
in piezoelectric 
nonlinear plate 

Coupled equations of 
electomechanic

Theory of Von Karman 
strain

Mindlin 2D element

Iteration and Newmark 
methods

https://www.sciencedirect.com/topics/physics-and-astronomy/windpower-utilization
https://www.sciencedirect.com/topics/physics-and-astronomy/windpower-utilization
https://www.sciencedirect.com/topics/engineering/harvester
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Fig. 2. The displacement and rotation parameters. 

  

Green-Lagrangian strain vector is used in the 
Mindlin theory and the Von Karman parameter 
is applied in the nonlinear effect of strain. The 
strain equations are presented as follow0:  

o

o

o

22
No ox

x x x x

2 2
y No o

y y y y

yo o o ox
xy

x

u wu 1 w 1
z { } z{ } { }

x 2 x x x 2 x

v wv 1 w 1
z { } z{ } { }

y 2 y y y 2 y

u v w wu v w w
z z

y x x y y x y x x y

{ }

     
 = + = − + =  −  +    

       

     
 = + = − + =  −  +    

       

      
 = + + = + − − +

         

=  +
o

N
y xy xy{ } z{ } { } −  + 

(2) 

o
yz y

o
xz x

wv w

z y y

wu w

z x x

 
 = + = −

  

 
 = + = −

                                    (3) 
Where εx and εy, are the inplane longitude 
strains, γyz  and γxz, the transverse shear strains, 
γxy, inplane shear strain. The strain vector is 
obtained as follow: 

x
yz

y o N s
xz

xy

{ } z{ } { } { }

 
      
 =  −  +  =    

   
  

                                       (4) 

o

o

o

x

o o
o y

o o

xy

0
x

u u
{ } 0 [D ]

v vy

y x



 
     
      

 =  = =      
       

     
 
  

                                                            (5) 

   
x

x x

y

y y

xy

0
x

0 D
y

y x



 
 
  

      
 =  = =                   

 
  

                                                (6) 

o
N
x

N o
N y o

N
xy o o

N o

w
0

x

w1 x
{ } 0 w

2 y

yw w

y x

1
[ (w)]{D }w

2


 
 

     
        

 =  =         
         

 
  

= 

        (7) 

 

o
oy

s x
o

yx

o

w s x

y

s

w
w0 1

y y
{ }

w
1 0

xx

w

{D } [I ]

0 1
[I ]

1 0

      − −       
  = =    

     − −        

 
 

= −  
  

 
=  
 

              (8) 

Where }εo}, is midplane strain vector, 
{ }

, 
curvature vector, }εN}, nonlinear strain vector, 
}εS}, vector of transverse shear strain. 
The coupled equations for a layer i of a 
multilayered plate are presented as follow:  

j i j j j

T
j j j j j

{D} [e] { } [ ] {E}

{ } [K] { } [e] {E}

=  + 

 =  −
                     (9) 

Where }ε}, is the Green Lagrangian strain vector 
}σ}, the second Piola Kirchoff stress vector, 
}D}, the vector of electric displacement, [μ], the 
electric field vector, [ē], the piezoelectric matrix, 
[K], the permittivity matrix,{E}, the stiffness 
matrix. 
The piezoelectric coefficients e34 and e35 are zero 
because it is purposed that no shear force in zx 
and yz planes is excited by using the electrical 
field. 
The constitutive equations are expands as 
follows.  

x

yx 14 15

xyy 24 25

31 32 36 yzz j j

xz j

11 12 x

12 22 y

33 zj j

D 0 0 0 e e

D 0 0 0 e e

e e e 0 0D

0 E

0 E

0 0 E

 
 
    

    
=    

          
  

   
    

+     
  

    

      (10) 



JCARME                                                                                                              

x x11 12 16

y y12 22 26

xy xy16 26 66

44 45yz yz

45 55 jxz xzj

T

14 15 x

24 25 y

31 32 36 z jj

K K K 0 0

K K K 0 0

K K K 0 0

0 0 0 K K

0 0 0 K K

0 0 0 e e E

0 0 0 e e E

e e e 0 0 E

     
     
       
  =   

    
     

         

   
   

−   
  
  

      (11) 

 
The vector of electric field is defined by using 
the electric potential φ as follow: 
 

x

y

z

x xE

E (x, y, z) { } (x, y, z)
y y

E

z z



    
   
      

      
= − = −  =−       

      
      

   
       

                       (12) 
 
The electric potential changes linearity through 
the thickness of the plate layers. So its value is 
presented as follow.   

1
t b

b
1 2

t

1 2

b

t

z z z z
(x, y, z) (x, y) (x, y)

t t

(x, y)
M (z) M (z)

(x, y)

M (z) M (z) M (z)

(x, y)
{ (x, y)}

(x, y)

 + 

 


 
  

 
  






   − −
 =  +    

   
   

   =      

   =
   

  
 =  

  

    (13) 

1
1 2

z z z z
M (z) M (z)

t t

+  
 

 

   − −
= =   
   
     

 
Where φt

ρ and φb
ρ  are the electric potential at the 

top and bottom of the piezoelectric layer ρ, tρ, the 
thickness of layer ρ. 
  

1 2

1 2

{E} { } M (z) { (x, y)} [Z ][D ]{ (x, y)}

M M 0 0 0 0

[Z ] 0 0 M M 0 0

0 0 0 0 1 t 1 t

    
    

 
 

 
  

 

 = −   = − 
 

 
 
 

=
 
 −
  

        (14) 

T

0 0 1 0
x y

[D ]

0 0 0 1
x y




  
  
 =

  
                    (15) 

 
The stress equations for a layer ρ of a multilayer 
plate can be expressed as follow: 
 

 

 

p p p

s s s

T
s

p

14 15
p 31 32 36 s

24 25

{ } [K ] [0] { }

{ } [0] [K ] { }

[0] [e ]
[Z ][D ]{ (x, y)}

e 0

e e
e e e e [e ]

e e

  

  
 



         
=     

          

 
 + 
    

 
  = =   

 

      (16) 

11 12 16
44 45

p s 12 22 26
45 55

16 26 66

K K K
K K

[K ] [K ] K K K
K K

K K K

 
   

= =   
      

 
Where [KS], is the transverse shear stiffness 
matrix, [Kρ], the inplane stress stiffness matrix. 
The electric displacement equations for a layer ρ 
of a multilayer plate can be expressed as follow: 

 

 

ss p

p p s

s

p

[0] [e ]{D } { }

D e 0 { }

[ ] {0}
[Z ][D ]{ (x, y)}

0

 

  
 



        
 =              

 
−  


  

                 (17) 

 
The above equation presents the results of stress 
per unit width of the plate (Fig. 3).  
 

( )

( )

     

h 2

p p sh 2

x x
yz

y y
xz

xy xy

{N},{M},{ }

{ }, z{ }, { } dz

M N

M M N N

M N

+

−



=   

   
          

= =  =     
     

      


 (18) 

 
Where {N}, is the vector of inplane stress, {M}, 
the vector of moment, {T}, the vector of 
transverse shear stress, h, is the plate thickness. 
By using the above equations, the following 
relatives are obtained. 
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To
eN

T
e

[A ]{N} [A] [B] { } { }
{ }

{M} [B] [D] { } [B ]

        + 
 = +     
               

                           (19) 

1 T 2 T
s e e{ } [S]{ } [S ] { } [S ] { }

x y

 
 =  +  + 

 

                                    (20) 
 

 
Fig. 3. The stress of mindlin plate. 
 

The equation of strain-displacement can be 
defined as follow: 

 
 

 
 

L N L N1
b b b 2

o NL N
b

3x1 3x2L
b

3x2 3x1

3x2 N 3x2N

3x2 3x1 3x2

T

o o o x y
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0

[D ] {0} [0]
[D ]

[0] {0} [D ]

[0] [ (w)]{D } [0]
[D (w)]

[0] {0} [0]

{u} u v w







  =  +  = +
 

       
 =  =   

      

 
=  
 

 
=  
 

 =   

      (21) 

 

s
s

s 2x2 w 2

{ } [D ] {u}

[D ] [0] {D } [I ]

 =

= −                               (22) 
The vector of inplane stress-moment and the 
transverse shear stress are expressed as follow: 
 

 

 

L N T1
b e2

u

{N} [C]([D ] [D (w)]){u} [C ] { }

N
{N } {N }

M



= + +  =

  
= + 

  

  (23) 

T u
s e{ } [S]{ } [S ] [D ]{ } { } { } =  +  =  + 

    (24) 

 
 

 
 

   

i
i x

i i i
y

i
i
xy
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x i

yzi i i
y

i
xzi

xy

N
N

N N N

M
N

M
T

M M T i u,

T
M

 
   
   

= =   
   
    

 
   
   

= = =    
    
  

      (25) 

T T T T
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e e e

14 151
e
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24 252
e k

24 25

[S ] [S ] [S ] [S ]
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t e e
[S ]

e e2

t e e
[S ]

e e2

  










 =
 

 =
 

 
=  

 

 
=  

 

               (26) 

 
The vector of electric potential and the gradient 
matrix of electric potential for multilayer plate 
are presented in the following relative. 
 

1
b

1
t

1 2 NP

NP
b

NP
t

{ } [D ] diag [D ] [D ] [D ]   

   
  
   
     = =   
 
   
  
    

    (27) 

 
The coefficient matrixes of multilayer plate are 
obtained as follow: 
 

( )

NL
2 2 3 3

p k k 1 k k 1 k k 1 k

k 1

[A] [B]
[C] [A], [B], [D]

[B] [D]

1 1
[K ] (z z ), (z z ), (z z )

2 3
+ + +

=

 
= = 
 

 
− − − 

 


      (28) 
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e 1 e
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1
[A ] e

1
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1
[B ] (z z )[A ]

2

 

 +  

 
 =
  

 =
  

− 
=  
 

 =
  
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                  (29) 

NL

s s k k 1 k s
i 1

s
s

s

[S] [F ] [K ] (z z )[F ]

f 0
[F ]

0 f

+
=

= −

 
=  
 


                                       

                                                                      (30) 
 

Where NL, is the total number of layers, NP, the 
piezoelectric layers number. 
The correction factor fs is presented by follow 
equation, because the transverse shear stress 
changes in the thickness direction 0. 
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( )

h2 2
2 2 2c c 02

hs 2 2

c2

8 IC C h
f A x dx

1 Ah 1 4 C−

  
= =  =   −   − 



                                                                (31) 
 
Where Cc, is the elasticity module, λ, the 
frequency parameter, ω, the vibration frequency 
of transverse shear, ρ0, the plate density, υ, the 
poison factor.   
The mechanical energy can be defined by the 
elastic and piezoelectric stress as follow: 
 

   

   

T TM u
p p p pV V

T Tu
s s s sV V

1 1
= ε { }dV + ε { }dV

2 2

1 1
ε { }dV ε { }dV

2 2





   +

 + 

 

 

                        

                                                                      (32) 
 

Where ΠM, is Hellinger Reissner function, V, the 
plate volume, }εp}, the vector of plane strain, 
}εS}, the vector of transverse shear strain, }σp

u}, 
the vector of elastic stress, }σp

φ}, the vector of 
piezoelectric stress, }σs

u}, the vector of elastic 
transverse shear stress, }σs

φ} , the vector of 
piezoelectric transverse shear stress.  
The volume integral is replaced to the surface 
integral by the vector of inplane stress-moment. 
 

 

                         (33) 
 
The follow equation is obtained by the 
coefficient matrix.  
 

   

       

T TM T
b b b eA A

T T T
s s s eA A

1 1
ε [C]{ε }dA ε [C ] { }dA+ 

2 2
1 1

 ε S { }dA  ε S D { }dA
2 2



 = + 

  +  

 

 

    

(34) 
 
The equation of strain-displacement is used to 
the above equation as follow: 
  

( )  ( ) 
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T D S [S] [S ] [D ]{ }dA

2

−
 

 



+ +
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




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              (35) 
The electric energy can be defined as follow: 
 

   
T TP u

V V

1 1
{D } {D }dV dV

2 2

 =  +  
      (36) 

 
Where ΠP, is the electric energy, , the gradient  
of electric potential , }Du}, the vector of the 
piezoelectric electric displacement, }Dφ}, the 
vector of the dielectric electric displacement.  
The volume integral is replaced to the surface 
integral as follow. 
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                           =  
 

   
−       

     

 

 (37) 
 
The follow equation is obtained by the 
coefficient matrix.  
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e bA
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e sA

T

A

1
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2

1
{[D ]{ }} [S ]{ }dA

2

1
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2



  
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 


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                   (38) 

 

The equation of strain-displacement is used as 
follow.  
 

( ) 

( ) ( )

( )

P

T
L N T1
b e2A

T T
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 =

+ 
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The electric matrix of layer is defined as follow: 
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 
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 

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
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 =  

  
 
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  
=   =  

 

 − 
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
 (40) 

The displacement field, the electric potential and 
the transverse shear stress are described by two 
dimension elements. The element parameters are 
defined as follow: 
   

       
T T T TM u u

b b s sA A A A
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= ε {N }dA + ε {N }dA + ε {T }dA+ ε {T }dA

2 2 2 2

     
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     (41) 
Where Ni, is the shape function of node ith ,       [

iN̂ ], the shape function matrix of electric 

potential, , [I5], unit matrix 5×5, n, the number of 

shape functions, {
eû }i, the displacement vector, 

{
e̂ }i, the potential vector of element e of node 

i. For i=5 to n, the shape functions are 

hierarchical functions.  

By using lagrangian shape functions, the 

transverse shear stress Tyz
e  and TXZ  are 

obtained. 
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(42) 

 

Where 
iN , is the shape function ith transverse 

shear stress point, {
eT̂ }i the vector of transverse 

shear stress of ith point of element e.  

According to the follow equation, the 

combination of the mechanical and electrical 

energy functions presents the total energy 

function. 
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Where [Bb
L], [Bs], [BN] and [Bφ] are the strain-

displacement and the electric displacement-

potential matrixes, Πe, the total energy function, 

a, the area of element. These matrixes are 

defined as follow:  
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1 n
ˆ ˆ[B ] [D ][N ] [D ][N ] ...[D ][N ]      

 = =
        (46) 

 
According to the variation method of the energy 
function, the follow equation is obtained. 
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The kinetic energy function Je and the virtual 
work due to the mechanical and electrical 
loading We are expressed as follow 0:  
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By using Hamilton equation and the method of 
variation, the equation of motion is obtained as 
follow: 
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Where {fu}e, is the mechanical load vector, {fφ}e,   
the electrical load vector of element e. 
The vibration modes of a plate have strain nodes. 
In this nodes, the strain sign changes in the plate 
width and length. It is demonstrated that the 
phenomena of voltage cancellation is obtained 
by the strain nodes in the vibration modes. The 
segmented electrodes can be used for preventing 
the voltage cancellation. 
This paper investigates the cancellation 
phenomenon observed in the voltage response of 
piezoelectric harvesters. The analysis considers 
a bimorph plate configuration with both 
continuous and segmented electrodes. The 
constitutive equation relating the electric current 
and the electrical field in a piezoelectric layer is 
derived from Gauss’s law, which can be 
expressed as: 
 

( ) ( )
.

A
l

v td
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dt R
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                                       (51) 
 
Where Rl, is resistive load, v, electric potential, 
n, unit normal, D, electric displacement vector 
and A, electrode area. 
If the plate is thin and the nonlinear strain 
parameter in equation is omitted, the axial strains 
will be proportional to the plate curvature at level 
‘z’.  
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By using the piezoelectric constitutive 
relationship, the following equation is obtained. 
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According to above equation, the bending slope 
at the electrodes boundaries is an effective factor 
in the harvester. For a certain mode shape, If the 
sign of the strain distribution changes, the 
phenomena of the electrical cancellation from 
the energy harvesting will obtain for a certain 
vibration mode. 
The Eigen curvature function reveals the 
conditions leading to voltage cancellation. The 
presence of both negative and positive regions 
under the Eigen curvature function results in a 
reduction of electrical output due to the 
integration of electric displacement. Therefore, 
using segmented electrodes and integrating only 
over specific electrode areas can mitigate this 
cancellation phenomenon. 
The locations where the curvature changes sign 
are referred to as strain nodes. These strain nodes 
correspond to the inflection points of the Eigen 
curvature function for a given vibration mode. 
 
3. Properties of specimen 
 
The used piezoelectric plate is PZT-5A in the 
series connection. The specimen was obtained 
from Piezo System. Its properties are presented 
in Table 2. Fig. 4 shows the connection type of 
the piezoelectric layers. 
The cases of boundary conditions are as: Clamp 
in the all edges of plate(cccc), Simply support in 
the all edges of plate(ssss), Two Simply supports 
and clamps in the edges of plate(scsc). The Fig. 
5 shows the position of boundary conditions.  
 

 
Fig. 4. The type of connection of piezoelectric layers. 

 

Table 2. The properties of piezoelectric plate. 

dimensions. 

L(m) 2hp(m) W(m) 

1×10-1 1×10-3 1×10-1 

 

 
Fig. 5. The position of boundary condition. 
 

By using a finite element method for 
piezoelectric nonlinear plate in the Matlab 
software, the electrical response of plate is 
obtained. The harmonic excitation force is 
applied for the electrical response by the follow 
equation. The excitation acceleration is 
considered 9.81(m/s2). 
 

2 p eF h a cos( t ) =
                                        (55) 

 
Where ρ, is the density of piezoelectric plate, a  

ea , the amplitude of excitation acceleration, ω, 

the excitation force frequency, hp, the layer 
thickness and t, time.   
 
4. Results and discussion 
 
The voltage response of the piezoelectric 
nonlinear plate is shown in Figs. 6 and 7 for 
limitation of the first and second frequency. As 
is clear from the figure, the behavior of voltage 
with frequency is nonlinear. In physical terms, 
this means that with the same frequency 
changes, the behavior of the voltage response of 
the structure is not the same on both sides of the 
natural frequency. 
 According to the results, the case of simply 
support in all edges of the plate has the 
maximum voltage. The case of clamp in all 
edges of the plate has the minimum voltage 
response in the open circuit condition.  
The first frequencies of maximum voltage 
response for clamps, simply supports and simply 
supports-clamps boundary conditions are 549, 
415 and 263Hz, respectively, and the second 
frequencies of maximum voltage response are 
1687, 881 and 809Hz, respectively. 
By comparing the obtained results with the 
results of reference 0, it can be seen that in the 
case of the sheet model with supporting 
restraints on both sides, the resulting voltage has 
increased about two times. Due to the fact that 
the model of this research has two sides and the 
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reference model 0 has one support side, the 
effect of the increase in voltage obtained by 
increasing the supports was taken into 
consideration. 
The mode shapes for the clamp boundary 
conditions are shown in Figs. 8 and 9. The mode 
shapes for the simply supports boundary 
conditions are shown in Figs. 10 and 11. Figs. 12 
and 13 present the mode shapes for the clamp-
simply supports boundary conditions. 
 

 
Fig. 6. The voltage response of piezoelectric 
nonlinear plate in the limitation of the first mode. 
 

 
Fig. 7.  The voltage response of piezoelectric 
nonlinear plate in the limitation of the second mode. 
 

 
Fig. 8. The first mode shape for the clamp boundary 
conditions. 

 

 
Fig. 9. The second mode shape for the clamp 
boundary conditions. 

 
Fig. 10. The first mode shape for the simply supports 
boundary conditions. 
 

 
Fig. 11. The second mode shape for the simply 
supports boundary conditions. 
 

 
Fig. 12. The first mode shapes for the clamp-simply 
supports boundary conditions. 

 

 
Fig. 13. The second mode shapes for the clamp-
simply supports boundary conditions. 

 
The curvature of electrodes is one of the 
effective parameters in the response of voltage. 
The change of curvature in the mode shape 
causes the change of voltage phase. In the finite 
element model, the strain elements have the 
strain nodes. In these elements, the curvature 
direction changes and, the strain is zero. The Fig. 
14 shows the strain elements. 
The nodes with the phase angle φ is shown by 
symbol ● and the phase angle φ+180 by symbol 
○.  The strain elements have the both of nodes. 
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Fig. 14. The strain elements. 

 
These elements are the boundary of potential 
region and the position of separated electrodes.   
Fig. 15 shows the change of the plate curvature 
direction in the clamp boundary conditions for 
the first mode shape. The finite element model 
has two segmented electrodes. Each segment has 
the steady electrical potential. (Fig. 16) 
 

 
Fig. 15. The change of the plate curvature direction 
for the clamp boundary conditions in the first mode 
shape. 

 

 
Fig. 16. The separated electrodes in the clamp 
boundary conditions for the first mode shape. 
 

The voltage results in the case of the segmented 
electrodes are shown in Fig. 17 for clamp 
boundary conditions and frequency 549Hz. The 
response of voltage for the continuous electrode 
and the combination of segmented electrodes are 
shown in Fig. 18. 
 

 
Fig. 17. The voltage results in the case of the 
segmented electrodes. 

 
The voltage amplitude for frequency 549Hz is 
0.49V in clamp boundary conditions and the 
continuous electrode, while this voltage is 3.16V 
in the combination of separated electrodes. 
 

 
Fig. 18. The response of voltage for the continuous 
electrodes case and the combination of segmented 
electrodes. 

 
The change of the plate curvature direction is 
shown in Fig. 19 for simply support boundary 
conditions in the first mode shape. The finite 
element model has two segmented 
electrodes(Fig. 20). 
The voltage results in the case of the segmented 
electrodes are shown in Fig. 21 for simply 
supports boundary condition and frequency 
263Hz. The response of voltage for the 
continuous electrodes and combination of 
segmented electrodes are shown in Fig. 22.  
 

 
Fig. 19. The change of the plate curvature direction 
for simply supports boundary conditions in the first 
mode shape. 
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Fig. 20. The separated electrodes in simply supports 
boundary conditions for the first mode shape. 
 

The voltage amplitude for frequency 263Hz is 
0.77V in simply supports conditions and the 
continuous electrode, while this voltage is 1.3V 
in the separated electrodes. 
 

 
Fig. 21. The results of voltage in the case of the 
segmented electrodes for simply supports boundary 
condition. 

 
Fig. 22. The response of voltage for the continuous 
electrodes case and combination of segmented 
electrodes. 

 
The change of the plate curvature direction is 
shown in Fig. 23 for simply-clamp boundary 
conditions in the first mode shape. The finite 
element model has two segmented electrodes 
(Fig. 24). 
By comparing the results with reference 0, it can 
be seen that in the case of the sheet model, with 
the presence of supporting supports on both sides 
of the sheet model, the resulting voltage is much 
higher than that of the single-support beam in 
reference 0. This result shows that the 
application of the sheet model using the strain 
node separation method and the presence of two 

supporting supports will have an effective effect 
on increasing the voltage response. 
 

 
Fig. 23. The change of the plate curvature direction 
for simply-clamp boundary conditions in the first 
mode shape. 
 

 
Fig. 24. The separated electrodes in the finite element 
model for simply-clamp boundary conditions in the 
first mode shape. 
 

The voltage results in the case of the segmented 
electrodes are shown in Fig. 25 for simply-clamp 
boundary conditions and frequency 415Hz. The 
response of voltage for the continuous electrodes 
and combination of segmented electrodes are 
shown in Fig. 26.  
The voltage amplitude for frequency 415Hz is 
0.56V in simply support-clamp conditions and 
the continuous electrode, while this voltage is 
2.7V in the separated electrodes. The result of all 
cases is been shown in Fig. 27.  
According to the results, the maximum of 
voltage response is related to clamp boundary 
conditions in the segmented electrode and the 
minimum of voltage response is related to clamp 
boundary conditions in the continuous electrode. 
The voltage response for different boundary 
condition cases is shown in the Table 3. 
The obtained results can be compared with the 
results presented in reference 0. In reference 0, 
the beam type structure is 40mm long, and in the 
continuous electrode state, the voltage response 
is about 0.25V, and in this research, the plate 
type structure with a length of 100mm has the 
voltage response of 0.5V. Comparing these two 
researches, the result is suitable for the 
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continuous electrode mode and this research 
shows that by using the individual electrode, a 
significant increase in the voltage response is 
obtained. 

 
Fig. 25. The voltage results in the case of the 
segmented electrodes for simply-clamp boundary 
condition and frequency 415Hz. 

 
Fig. 26. The response of voltage for the continuous 
electrode case and combination of segmented 
electrodes. 

 

 
Fig. 27.  The result of all cases. 

 

Table 3. The result of Voltage responsible for variable 

boundary condition 

       
B.C 

Frequency(Hz
) 

Continuou
s 

Electrode 
Voltage(V) 

Individua
l 

Electrode 
Voltage(V) 

ssss 263 0.77 1.3 
scsc 415 0.56 2.7 
ccc
c 

549 0.49 3.16 

 
5. Conclusions 
 
This paper investigates the electrical response of 
a piezoelectric nonlinear plate, specifically 
focusing on a bimorph configuration under 
various boundary conditions and in an open-

circuit state. The analysis demonstrates that the 
presence of strain nodes, inherent in the 
vibration modes of the plate, significantly 
influences voltage output due to the cancellation 
effect. The vibration modes have strain nodes.  
The piezoelectric plate was used in both the 
continuous electrode and the segmented 
electrode example.  
This research investigated the electrical response 
of the open-circuit case under harmonic 
excitation. Improved energy harvesting 
performance was observed using separated 
electrodes. The Mindlin plate theory and Von 
Kármán strain were employed in the analysis. 
Harvester behavior was examined under various 
boundary conditions. 
In all cases, the voltage response for the 
continuous electrode was lower than that for the 
segmented electrodes at the first natural 
frequency. 
This suggests a significant difference in how the 
continuous and segmented electrodes respond to 
the same excitation (presumably vibration or 
some other external force) under clamped-
clamped boundary conditions. The segmented 
electrode’s peak response under these conditions 
implies a more efficient concentration or transfer 
of the excitation energy, while the continuous 
electrode’s minimum response indicates a less 
effective energy transfer or dissipation. Further 
investigation is needed to understand the 
underlying mechanisms. 
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