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Abstract. Let G = (V, E) be a simple graph and f a function defined from V to {0,1,2,3}. A vertex
u with f (u) = 0 is called an undefended vertex with respect to f if it is not adjacent to a vertex v with
f (v)≥ 2. The function f is called a generous Roman dominating function (GRD-function) if for every
vertex with f (u) = 0 there exists at least a vertex v with f (v) ≥ 2 adjacent to u such that the function
f ′ : V → {0,1,2,3}, defined by f ′(u) = α, f ′(v) = f (v)− α where α ∈ {1,2}, and f ′(w) = f (w) if w ∈
V −{u,v} has no undefended vertex. The weight of a GRD-function f is the sum of its function values
over all vertices, and the minimum weight of a GRD-function on G is the generous Roman domination
number γgR(G). The γgR-stability stγgR(G) (resp. γ−

gR-stability st−γgR
(G), γ+

gR-stability st+γgR
(G)) of

G is defined as the order of the smallest set of vertices whose removal changes (resp. decreases,
increases) the generous Roman domination number. In this paper, we first determine the exact values
of γgR-stability for some special classes of graphs, and then we present some bounds on stγgR(G). We
also characterize graphs with large stγgR(G). Moreover, we show that if T is a nontrivial tree, then
stγgR(T) ≤ 2, and if further T has maximum degree ∆ ≥ 3, then st−γgR

(T) ≤ ∆ − 1.
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1 Introduction

We consider finite, undirected, and simple graphs G with vertex set V = V(G) and edge
set E = E(G). The order |V| of G is denoted by n = n(G). For a vertex v ∈ V, the open
neighborhood of v is the set N(v) = NG(v) = {u ∈ V | uv ∈ E}, and its closed neighborhood is the
set N[v] = N(v) ∪ {v}. Moreover, the degree degG(v) of v is |NG(v)|. A vertex of degree one
is called a leaf, and its neighbor is called a support vertex. A vertex adjacent to two or more
leaves is called a strong support vertex. If A ⊆ V(G) and f is a function from V(G) into some
set of numbers, then f (A) = ∑x∈A f (x), and the sum f (V(G)) is called the weight ω( f ) of f .

As usual a path, cycle and complete graph on n vertices are denoted by Pn,Cn and Kn. A
tree is an acyclic connected graph. A star is the graph K1,m, with m ≥ 1, where the vertex of
degree m of the star is called the center. A double star DSr,s is a tree obtained from two disjoint
stars K1,r and K1,s by adding an edge joining their centers. The join G ∨ H of two graphs G
and H is a graph formed from disjoint copies of G and H by connecting each vertex of G to
each vertex of H.

Inspired by the strategies for defending the Roman Empire presented in ReVelle and Ros-
ing [13] and Stewart [17], Cockayne et al. [10] introduced in 2004 the concept of Roman dom-
ination. But since its introduction, Roman domination has been intensively studied which
led to the emergence of several variants. There are currently over 250 papers published on
topics related to this concept. For more details we refer the reader to the book chapters [4, 5]
and surveys [6–9].

In 2024, Benatallah, Blidia and Ouldrabah [3] introduced a new variant which they called
generous Roman domination defined as follows. Let f be a function defined from V(G)

to {0,1,2,3}. A vertex u is said to be undefended with respect to f if f (u) = 0 and u has no
neighbor v with f (v) ≥ 2. The function f is a generous Roman dominating function (GRD-
function) if for every vertex with f (u) = 0 there exists at least a vertex v with f (v)≥ 2 adjacent
to u such that the function g : V → {0,1,2,3} defined by g(u) = α, g(v) = f (v) − α where
α ∈ {1,2}, and g(w) = f (w) if w ∈ V − {u,v} has no undefended vertex. The weight of a
GRD-function f is the value f (V) = ∑u∈V f (u), and the minimum weight of a GRD-function
on a graph G is the generous Roman domination number, abbreviated GRD-number, denoted
γgR(G). For any GRD-function f of G, let Vi = {v ∈ V | f (vi) = i}, where i ∈ {0,1,2,3}. Since
these four sets determine f , we can write f = (V0,V1,V2,V3). Also, a γgR(G)-function is a
GRD-function of G with weight γgR(G).

In this paper, we are interested in studying the behavior of the GRD-number with re-
spect to the deletion of a set of vertices. We therefore define the generous Roman dom-
ination stability (GRD-stability, or just γgR-stability) of a graph G as being the minimum
order of a set of vertices whose removal changes the generous Roman domination number
of G. On the basis of this definition, we can also define the γ−

gR-stability of G (resp. the
γ+

gR-stability) to be the minimum order of a set of vertices whose removal decreases (resp.
increases) the GRD-number of G. By following the standard notations, let stγgR(G), st−γgR

(G)

and st+γgR
(G) denote the γgR-stability, γ−

gR-stability and γ+
gR-stability, respectively. Clearly,
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stγgR(G) = min{st−γgR
(G), st+γgR

(G)} holds for every graph G. Furthermore, it is worth noting
that it is possible that the removal of any set of vertices from a graph G does not increase
γgR(G), and for such cases, we consider that st+γgR

(G) = ∞. The concept of stability was first
studied in 1983 by Bauer et al. [2] for the domination number, and was subsequently con-
sidered for other domination parameters, including the domination number [11], the Roman
domination number [12], the double Roman domination number [18], the outer independent
double Roman domination number [15], the restrained domination number [1] and very re-
cently the independent double Roman domination number [14].

In this paper, we first determine the exact values on the γgR-stability of some special
classes of graphs, including paths, cycles and complete graphs. Then we present some
bounds on stγgR(G), and provide a characterization of all graphs with large stγgR(G). More-
over, for the class of trees, we show that if T is a nontrivial tree, stγgR(T)≤ 2, and if further T
has maximum degree ∆ ≥ 3, then st−γgR

(T) ≤ ∆ − 1.

2 Exact values

In this section, we determine the GRD-stability for some classes of graphs. The following
two results established in [3] will be useful.

Proposition 2.1 ( [3]). For n ≥ 1, γgR(Pn) =
⌈6n

7

⌉
.

Proposition 2.2 ( [3]). For n ≥ 4, γgR(Cn) =
⌈6n

7

⌉
.

We first determine the γ−
gR-stability for paths.

Proposition 2.3. For n ≥ 2, st−γgR
(Pn) =

{
2 if n ≡ 0 (mod 7)
1 otherwise.

Proof. The result is trivial when n ∈ {2,3}, and so we assume that n ≥ 4. Let Pn = v1v2 · · ·vn.
If n ̸≡ 0 (mod 7), then it follows from Proposition 2.1 that γgR(Pn − vn) = γgR(Pn−1) =⌈

6(n−1)
7

⌉
< γgR(Pn), and thus st−γgR

(Pn) = 1. Hence assume that n ≡ 0 (mod 7). We shall

first see that st−γgR
(Pn) ≥ 2. Consider a vertex x of Pn, and observe that either Pn − x = Pn−1

or Pn − x consists of two disjoint paths Pn1 and Pn2 such that n1 + n2 = n − 1. In the former
case, since n − 1 ≡ 6 (mod 7), we have that γgR(Pn−1) =

⌈6n
7

⌉
. In the latter case we have,

without loss of generality, n1,n2 ≡ 3 (mod 7), or n1 ≡ 0 (mod 7) and n2 ≡ 6 (mod 7), or
n1 ≡ 1 (mod 7) and n2 ≡ 5 (mod 7), or n1 ≡ 2 (mod 7) and n2 ≡ 4 (mod 7). In all four situ-
ations, we have through Proposition 2.1, γgR(Pn1)+γgR(Pn2) =

⌈
6n1

7

⌉
+
⌈

6n2
7

⌉
=

⌈6n
7

⌉
. Hence,

we conclude that st−γgR
(Pn) ≥ 2. Now, by Proposition 2.1, we have that γgR(Pn − {v1,v2}) =⌈

6(n−2)
7

⌉
< γgR(Pn), leading to st−γgR

(Pn) ≤ 2. Therefore, st−γgR
(Pn) = 2.

Observation 2.4. For a path Pn = x1x2 . . . xn with n ≥ 7, there exists a vertex x ∈ V(Pn) such that
γgR(Pn) = γgR(Pn − x).
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Proof. If n = 7, then by Proposition 2.1, γgR(P7) = γgR(P6) = γgR(Pn − x7). Hence let
n ≥ 8. Then Pn − x7 consists of two disjoint paths P6 and Pn−7 and again by Proposition 2.1,
γgR(Pn) = ⌈6n

7 ⌉ = 6 + ⌈6(n−7)
7 ⌉ = γgR(P6) + γgR(Pn−7). 2

Proposition 2.5. For n ≥ 2, st+γgR
(Pn) = ∞.

Proof. Assume for a contradiction that there exists an order n′ such that st+γgR
(Pn′) is finite. In

this case, among all set of vertices of cardinality st+γgR
(Pn′) whose deletion increases γgR(Pn′),

let S be one which provides the largest number of components in the subgraph induced by
V(Pn′) − S. Let Pn1 , Pn2 , . . . Pnk denote such components of Pn′ − S. By Observation 2.4 and
the highest of k, we have ni ≤ 6 for each i ∈ {1, . . . ,k}. Now, if there are two consecutive
vertices xi, xi+1 in S, then we may assume that xi is adjacent to some component Pnj , say
j = 1. Clearly, by Proposition 2.1, the inequality γgR(Pn′ − S) ≤ γgR(Pn′ − (S − {xi})) holds,
and consequently, this leads to γgR(Pn′) < γgR(Pn′ − S) ≤ γgR(Pn′ − (S − {xi})). Therefore,
the removal of S − {xi} also increases γgR(Pn′), thereby making S − {xi} smaller than S, a
contradiction. Hence, S cannot contain consecutive vertices. A similar argument also shows
that x1, xn ̸∈ S. It follows that |S|= k − 1. Now, let ti be the number of components of Pn′ − S
of order i such that i ∈ {1,2,3,4,5,6}. Then k − 1 = (∑6

i=1 ti)− 1, n′ = ∑6
i=1 iti + (k − 1), and

so

γgR(Pn′ − S) =
6

∑
i=1

iti =
6

∑
i=1

ti

⌈
6i
7

⌉
=

6

∑
i=1

6iti + iti

7
=

6

∑
i=1

6iti + (k − 1)− (k − 1) + iti

7

=
6n′

7
−

6

∑
i=1

(6 − i)ti − 6
7

.

By a simple calculation one can conclude that γgR(Pn′ − S)≤ ⌈ 6n′
7 ⌉ leading to a contradiction.

Therefore, st+γgR
(Pn) = ∞.

According to Propositions 2.3 and 2.5, we immediately derive the following result.

Corollary 2.6. For n ≥ 2, stγgR(Pn) = st−γgR
(Pn)

In the following, we consider cycles where we shall determine the GRD-stability.

Proposition 2.7. For n ≥ 4, st−γgR
(Cn) =

{
2 if n ≡ 0 (mod 7)
1 otherwise.

Proof. The result is trivial when n ≤ 6, and so we assume that n ≥ 7. Let Cn = v1v2 . . . vnv1. If
n ̸≡ 0 (mod 7), then by Propositions 2.1 and 2.2, we have for any vertex v of Cn, γgR(Cn −
v) = γgR(Pn−1) =

⌈
6(n−1)

7

⌉
< γgR(Cn). Hence, in this case, st−γdR

(Cn) = 1.
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Now, suppose that n ≡ 0 (mod 7), and observe that n − 1 ≡ 6 (mod 7). It follows from
Proposition 2.2 that γgR(Cn − vn) = γgR(Pn−1) =

⌈
6(n−1)

7

⌉
= γgR(Cn), leading that st−γgR

(Cn)≥
2. Moreover, by considering the set S = {v1,vn}, then deleting S will provide a path of order
n − 2, and by Proposition 2.1, γgR(Cn − S) = γgR(Pn−2) ≤

⌈
6(n−2)

7

⌉
< γgR(Cn). Therefore,

st−γgR
(Cn) = 2.

Proposition 2.8. For n ≥ 4, st+γgR
(Cn) = ∞.

Proof. Assume for a contradiction, there exists an order n′ such that st+γgR
(Cn′) is finite. Among

all set of vertices of cardinality st+γgR
(Cn′) whose deletion increases γgR(Cn′), let S be one

which provides the largest number of components in the subgraph induced by V(Cn′)− S.
Let Pn1 , Pn2 , . . . Pnk denote the components of Cn′ − S. As in the proof of Proposition 2.5 we
may assume that ni ≤ 6 for each i ∈ {1, . . . ,k} and that S does not contain two consecu-
tive vertices. Thus, |S| = k. Let ti be the number of components of C′

n − S of order i for
i ∈ {1,2,3,4,5,6}. Then k = (∑6

i=1 ti), n′ = ∑6
i=1 iti + k, and thus

γgR(Cn′ − S) =
6

∑
i=1

iti =
6

∑
i=1

ti

⌈
6i
7

⌉
=

6

∑
i=1

6iti + iti

7
=

6

∑
i=1

6iti + k − k + iti

7

=
6n′

7
−

6

∑
i=1

(6 − i)ti

7
≤ ⌈6n′

7
⌉,

a contradiction. Thus st+γgR
(Cn) = ∞.

According to Propositions 2.7 and 2.8, we immediately derive the following result.

Corollary 2.9. For n ≥ 4, stγgR(Cn) = st−γgR
(Cn)

We close this section by providing the γgR-stability of three specific graphs, namely com-
plete graphs, stars and double stars. For this purpose, we need the following Observations.

Observation 2.10 ( [3]). For n ≥ 2, γgR(Kn) = 2 and for n ≥ 3, γgR(K1,n−1) = 3.

Observation 2.11. For 1 ≤ r ≤ t,

γgR(Sr,t) =


4 if r = 1
5 if r = 2
6 if r ≥ 3

From the previous observations, one can easily obtain the following.

Corollary 2.12. stγgR(Kn) = st−γgR
(Kn) = n − 1 and st+γgR

(Kn) = ∞.

Corollary 2.13. For n ≥ 3, st−γgR
(K1,n−1) = n− 2, st+γgR

(K1,n−1) = 1 for n ≥ 5 and st+γgR
(K1,n−1) =

∞ for n ∈ {2,3,4}.

Corollary 2.14. For 1 ≤ r ≤ t, st−γgR
(Sr,t) = 1 for r ∈ {1,2,3} and st−γgR

(Sr,t) = r − 2 for r ≥ 4.
Furthermore, st+γgR

(Sr,t) = 1 for t ≥ 4.
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3 Bounds and graphs with large GRD-stability

In this section, we present some bounds on the GRD-stability and we characterize graphs
with large GRD-stability. Since for any graph of order n ≥ 2, γgR(G)≥ 2 with equality if and
only if G = Kn, the first bound is obtained.

Proposition 3.1. Let G be a connected graph of order n ≥ 2. Then stγgR(G)≤ n − 1 with equality if
and only if G = Kn.

Proof. If G is a nontrivial complete graph Kn, then γgR(G) = 2 and clearly stγgR(G) = n − 1.
Now, assume that G is not a complete graph Kn. Then n ≥ 3 and thus γgR(G) ≥ 3. Since
the GRD-number of any graph with two vertices is 2, we deduce that stγgR(G) ≤ n − 2, as
desired.

We now give a characterization of connected graphs with γgR(G) = 3 which will be useful
in what follows.

Proposition 3.2. Let G ̸= Kn be a connected graph of order n ≥ 3. Then γgR(G) = 3 if and only if
∆(G) = n − 1.

Proof. Let G ̸= Kn be a connected graph of order n ≥ 3. Clearly γgR(G) ≥ 3. If ∆(G) = n − 1,
then assigning 3 to a vertex of degree n − 1 and 0 to any other vertex, provides a GRD-
function of G of weight 3 and consequently γgR(G) = 3.

Conversely, assume that γgR(G) = 3 and let f = (V0,V1,V2,V3) be a γgR(G)-function such
that |V3| is as large as possible. If n = 3, then it follows from the connectedness of G that
∆(G) = 2 = n − 1. Hence let n ≥ 4. Since γgR(G) = |V1| + 2|V2| + 3|V3|, one of the two
possibilities holds either (i) |V3| = 1 and |V1| = |V2| = 0 or (ii) |V3| = 0 and |V1| = |V2| = 1. If
|V3| = 1 and |V1| = |V2| = 0, then the vertex in V3 is adjacent to all vertices of G leading to
∆(G) = n − 1. Now, assume that |V1| = |V2| = 1 and |V3| = 0. Let V1 = {x} and V2 = {y}.
Then every vertex in V(G)− {x,y} must be adjacent to y and it follows from n ≥ 4 and the
definition of GRD-function that the graph G − x is complete. On the other hand, since G is
connected x must be adjacent to some vertex z in G − x, implying that deg(z) = n − 1 and
consequently ∆(G) = n − 1.

Proposition 3.3. Let G be a connected graph of order n ≥ 3 such that γgR(G) = 3. Then stγgR(G)≤⌊n
2

⌋
, with equality if and only if G = K1,3 or G = K⌊ n

2⌋ ∨ K⌈ n
2⌉, for an odd n.

Proof. By Proposition 3.2, ∆(G) = n − 1. Since the result can be easily checked for n ∈ {3,4},
we assume that n ≥ 5. Let U be the set of vertices of G with maximum degree ∆(G). It follows
from γgR(G) = 3 that |U| ≤ n − 2. Moreover, if |U| ≥

⌊n
2

⌋
, then for any vertex x ∈ V(G)− U,

the graph G[U ∪ {x}] is a complete graph and so γgR(G[U ∪ {x}]) = 2, thus stγgR(G) ≤ n −
|U| − 1 ≤ n −

⌊n
2

⌋
− 1 ≤

⌊n
2

⌋
. If further, stγgR(G) =

⌊n
2

⌋
, then we have equality throughout

the previous inequality chain. In particular, |U|=
⌊n

2

⌋
and n −

⌊n
2

⌋
− 1 =

⌊n
2

⌋
, which implies

that n is odd. Now, if there is an edge xy in G −U, then G[U ∪ {x,y}] is a complete graph and
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so γgR(G[U ∪ {x,y}]) = 2 leading to stγgR(G)<
⌊n

2

⌋
, a contradiction. Thus G − U is edgeless

and thus G = K⌊ n
2⌋ ∨ K⌈ n

2⌉ where n is odd. Henceforth, we can now assume that |U| <
⌊n

2

⌋
.

Then G − U is a graph of order at least 3 with ∆(G) ≤ n − |U| − 2. By Proposition 3.2, it
follows that γgR(G − U) ̸= 3 and thus stγgR(G) ≤ |U| <

⌊n
2

⌋
as desired. This completes the

proof.

Proposition 3.4. If G is a graph of order n ≥ 2, then stγgR(G) ≤ δ(G) + 1.

Proof. Let v be a vertex of G with degG(v) = δ(G), and let G′ = G − N(v) and G′′ = G − N[v].
If δ(G) = 0, then v is isolated, and thus the result is valid. Hence we assume that δ(G)≥ 1. If
γgR(G′) ̸= γgR(G), then stγgR(G) ≤ δ(G) < δ(G) + 1. Hence assume that γgR(G′) = γgR(G),
and let f be a γgR(G′)-function. Since v is isolated in G′, f (v) = 1, and thus γgR(G′) =
γgR(G′′) + 1. t follows that γgR(G′′) = γgR(G)− 1 and therefore stγgR(G) ≤ δ(G) + 1.

Proposition 3.5. Let G be a graph with γgR(G) ≥ 4, then stγgR(G) ≤ n − ∆(G)− 1.

Proof. It follows from γgR(G) ≥ 4 that ∆(G) ≤ n − 2 and also ∆(G) ≥ 2. Since the result is
valid when G has an isolated vertex, we can assume that δ(G)≥ 1. Let v be a vertex of G with
degG(v) = ∆(G). Restricted to the subgraph induced by v and its neighbors, we deduce from
Proposition 3.2 that γgR(G[N[v]]) = 3, and thus γgR(G[N[v]])< γgR(G). Therefore removing
all vertices not in N[v] changes the GRD-number of G, leading to stγgR(G)≤ |V(G) \ N[v]|=
n − ∆(G)− 1.

Combining Propositions 3.4 and 3.5, the following result is immediate.

Corollary 3.6. Let G be a graph with γgR(G)≥ 4, then stγgR(G)≤ min{δ(G) + 1,n − ∆(G)− 1}.

In what follows, we provide a characterization of connected graphs with stγgR(G) ∈ {n −
2,n − 3}.

Theorem 3.7. If G ̸= Kn is a connected graph of order n ≥ 3, then stγgR(G) = n − 2 with equality if
and only if G ∈ {P3,K1,3}.

Proof. If G ∈ {P3,K1,3}, then it is easy to verify that stγgR(G) = n − 2. To prove the necessity,
let G be a connected graph with stγgR(G) = n − 2. Note that ∆(G)≥ 2, since G is a connected
graph having at least three vertices. Now, if γgR(G) ≥ 4, then by Proposition 3.4, ∆(G) ≤
n − stγgR(G)− 1 = 1, a contradiction. Hence, γgR(G) = 3. It follows from Proposition 3.3 that
n − 2 = stγgR(G) ≤

⌊n
2

⌋
and thus n ∈ {3,4}. Now, it is easy to see that G ∈ {P3,K1,3}.

Let H denote the paw graph, i.e, H is the graph obtained from K3 by adding a new vertex
that we join to a vertex of K3.

Theorem 3.8. If G is a connected graph of order n ≥ 4 such that G ̸∈ {Kn,K1,3}, then stγgR(G) ≤
n − 3, with equality if and only if G ∈ {P4,C4,K4 − e, H,K2 ∨ K3}.
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Proof. The upper bound follows from Proposition 3.1 and Theorem 3.7. Moreover, if G ∈
{P4,C4,K4 − e, H,K2 ∨ K3}, then one can easily check that stγgR(G) = n − 3. We now prove
the necessity. Assume that stγgR(G) = n − 3. If γgR(G) ≥ 4, then it follows from Proposition
3.5 that ∆(G) ≤ n − stγgR(G)− 1 = 2 and thus G is a path or a cycle. By Corollaries 2.6 and
2.9, we deduce that G ∈ {P4,C4}. In the sequel, we can assume that γgR(G) = 3. First let
n be even. In this case, by Proposition 3.3, n − 3 = stγgR(G) ≤ n

2 − 1 leading to n = 4. By
Proposition 3.2, ∆(G) = n − 1 = 3, and thus G = H or G = K4 − e. Now let n be odd. By
Proposition 3.3, n − 3 = stγgR(G)≤ n−1

2 leading that n = 5. Since stγgR(G) = n − 3 = 2 =
⌊5

2

⌋
,

it follows from Proposition 3.3 that G = K2 ∨ K3, and the proof is complete.

The next corollary is an immediate consequence of Proposition 3.1 and Theorems 3.7 and
3.8.

Corollary 3.9. If G ̸= Kn is a connected graph of order n ≥ 6, then stγgR(G) ≤ n − 4.

We close this section by presenting a Nordhaus-Gaddum type inequality for the sum of
the GRD-stability of a graph G and the complement G of G.

Theorem 3.10. Let G be a graph of order n ≥ 2. Then stγgR(G) + stγgR(G)≤ n with equality if and
only if G ∈ {Kn,Kn}.

Proof. If G is a complete graph, then G is an edgeless graph, and clearly stγgR(G) = 1, while
by Proposition 3.1 stγgR(Kn) = n − 1, and thus stγgR(G) + stγgR(G) = n. Likewise, if G = Kn,
then we have stγgR(G) + stγgR(G) = n. In the next, we may assume that G ̸∈ {Kn,Kn}. Thus
n ≥ 3, and clearly min{γgR(G),γgR(G)} ≥ 3. If γgR(G) = 3 (the case γgR(G) = 3 is similar),
then by Proposition 3.2, ∆(G) = n − 1, and so G has an isolated vertex. In which case, it
is clear that stγgR(G) = 1. Moreover, by Proposition 3.3, stγgR(G) ≤

⌊n
2

⌋
, and thus stγgR(G) +

stγgR(G)≤
⌊n

2

⌋
+ 1< n. In the following, we can assume that min{γgR(G),γgR(G)}≥ 4. Since

∆(G) + ∆(G) ≥ n − 1, we may assume, without loss of generality, that ∆(G) ≥ (n − 1)/2. If
∆(G) ≥ (n − 2)/2, then using Corollary 3.6 we have

stγgR(G) + stγgR(G) ≤ (n − ∆(G)− 1) + (n − ∆(G)− 1)

≤ (n − n − 1
2

− 1) + (n − n − 2
2

− 1)

=
2n − 1

2
< n.

Hence, we assume that ∆(G) < (n − 2)/2 and so δ(G) < (n − 2)/2. Applying Corollary 3.6,
leads to

stγgR(G) + stγgR(G) ≤ (n − ∆(G)− 1) + (δ(G) + 1)

≤ (n − n − 1
2

− 1) +
n
2

=
2n − 1

2
< n,

as desired. This completes the proof
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4 Trees

In this section, we determine the stgR(T)-stability and the stgR(T)-stability for trees. Note
that according to Proposition 2.5, st+gR(T) cannot be bounded.

Theorem 4.1. For every tree T of order n ≥ 2, stgR(T) ≤ 2.

Proof. Assume for a contradiction that there exists a tree T such that stγgR(T) > 2. Among
all such trees, we assume that T has a smallest order. By Corollaries 2.13 and 2.14, T is
neither a star nor a double star and thus it has a diameter, diam(T), at least 4. Let x1x2 . . . xd
be a diametral path in T. Note that x1 and xd are leaves. Let x1 = y1,y2, . . . ,yt be the leaf
neighbors of x2, and let Tx2 denote the subtree of T induced by x2 and its leaf neighbors.
If t ≥ 4, then T − x2 is a forest, and clearly γgR(T − x2) = γgR(T − Tx2) + t. Moreover, any
γgR(T − Tx2)-function can be extended to a GRD-function of T by assigning 3 to x2 and 0 to
y1, . . . ,yt leading to γgR(T)≤ γgR(T − Tx2) + 3 < γgR(T − x2), because of t ≥ 4. Hence if t ≥ 4,
then stgR(T) = 1, a contradiction. Therefore, t ≤ 3. Let L(T) denote the set of leaves of T, and
let f be a γgR(T)-function such that f (L(T)) is as small as possible. We consider three cases.

Case 1. t = 3.
By the choice of f , we must have f (x2) = 3 and f (y1) = f (y2) = f (y3) = 0. Since it is assumed
that stγgR(T) > 2, it follows that removing x2 does not change the GDR-number of T, and
thus γgR(T) = γgR(T − x2) = γgR(T − Tx2) + 3. Moreover, since any γgR(T − Tx2)-function
can be extended to a GRD-function of the tree T′ = T − {y2,y3} by assigning 2,0 to x2, x1

respectively. It follows that γgR(T′)≤ γgR(T − Tx2) + 2 = γgR(T)− 1, leading that stgR(T)≤
2, a contradiction.

Case 2. t = 2.
If f (x2) = 3, then reassigning the value 2 to x2 provides a GRD-function of T − {y1,y2} im-
plying that st−γgR

(T) ≤ 2, a contradiction. Hence we assume that f (x2) ≤ 2. It follows from
the choice of f that f (x2) = 0 and so f (y1) = f (y2) = 1. Then the restriction of f to T − x1 is
a GRD-function of T − x1 with weight ω( f )− 1, implying that stgR(T) = 1, a contradiction.

Case 3. t = 1.
Thus degT(x2) = 2. If f (x2) ≥ 2, then the function g defined on T − {x2, x1} by g(x3) =

min{3, f (x3) + 1} and g(x) = f (x) for any other vertex, is a GRD-function of T − {x1, x2} of
weight less than ω( f ) leading to stgR(T) ≤ 2, a contradiction. Hence assume that f (x2) ≤ 1.
Then f (x1) = 1 and thus the restriction of f to T − x1 is a GRD-function of T − x1 with weight
ω( f )− 1, leading to the contradiction that stgR(T) = 1. Therefore, stgR(T) ≤ 2 and this com-
pletes the proof.

Theorem 4.2. Let T be a tree of order n ≥ 3 with maximum degree ∆ ≥ 3. Then st−γgR
(T) ≤ ∆ − 1.

Furthermore, the bound is sharp for stars K1,∆.

Proof. If T is the star K1,∆, then by Corollary 2.13, we have st−γgR
(T) = ∆ − 1. Hence we

assume that T is not a star, and thus T has diameter at least 3. Let x1x2 . . . xd be a diametral
path in G. Clearly, x1 and xd are leaves. Let y1(= x1),y2, . . . ,yt be the leaf neighbors of x2,
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and note that t ≤ ∆ − 1, because of degT(x2)≤ ∆. Let f be a γgR(T)-function that assigns the
smallest possible values to the leaves. If t ≥ 3, then f (x2) = 3 and reassigning the value 2 to
x2 provides a GRD-function of T − {y1, . . . ,yt} implying that st−γgR

(T) ≤ ∆ − 1. Assume now
that t = 2. If f (x2) = 3, then the result follows as above. Thus we assume that f (x2) ≤ 2. It
follows from the choice of f that f (x2) = 0 and so f (y1) = f (y2) = 1. Then the restriction
of f to T − x1 is a GRD-function of T − x1 with weight ω( f ) − 1 and therefore st−gR(T) =
1 < ∆ − 1. Finally assume that t = 1. If f (x2) = 3, then the result follows as above. Thus
we can assume that f (x2) ≤ 2. If f (x2) ≤ 1, then by the choice of f we have f (x1) = 1 and
the restriction of f to T − x1 is a GRD-function of T − x1 with weight ω( f ) − 1 leading as
before st−gR(T) = 1 < ∆ − 1. Henceforth, we assume that f (x2) = 2. Then the function g
defined on T − {x1, x2} by g(x3) = min{3, f (x3) + 1} and g(x) = f (x) for any other vertex is
a GRD-function of T − {x1, x2} of weight ω( f )− 1 and thus st−gR(T) ≤ 2 ≤ ∆ − 1.

The next result is an immediate consequence of Proposition 2.3 and Theorem 4.2.

Corollary 4.3. Let T be a tree of order n ≥ 3 with maximum degree ∆. Then st−γgR
(T) ≤ ∆ with

equality if and only if T = P7k for some positive integer k.

We conclude this section with a problem.

Open Problem 4.4. Characterize all trees T with maximum degree at least three and st−gR(T) =
∆ − 1.

5 Conclusion

In this paper, we have studied the generous Roman domination stability. We determined
exact values of the generous Roman domination stability for special classes of graphs. Addi-
tionally, we established bounds on the γgR-stability for general graphs. For trees, we proved
that the γgR-stability is at most two, while the γ−

gR-stability is bounded above by the maxi-
mum degree ∆ − 1 of the tree. The problem of characterization of the trees that attain this
upper bound is open.
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