
تعداد نشریات | 11 |
تعداد شمارهها | 222 |
تعداد مقالات | 2,223 |
تعداد مشاهده مقاله | 3,282,013 |
تعداد دریافت فایل اصل مقاله | 2,354,653 |
راهکاری برمبنای هوش مکانی برای نجات پس از زمینلرزه | ||
پژوهش های سنجش از دور و اطلاعات مکانی | ||
دوره 3، شماره 1، دی 1403، صفحه 187-200 اصل مقاله (1.12 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22061/jrsgr.2025.11338.1086 | ||
نویسندگان | ||
ناهید بهرامی1؛ میثم ارگانی* 1؛ علی درویشی بلورانی1؛ علیرضا وفایی نژاد2 | ||
1گروه سنجش از دور و سامانه اطلاعات جغرافیایی، دانشکده جغرافیا، دانشگاه تهران، تهران، ایران | ||
2گروه مهندسی نقشهبرداری، دانشکده مهندسی عمران، آب و محیطزیست، دانشگاه شهید بهشتی، تهران، ایران | ||
تاریخ دریافت: 24 اسفند 1403، تاریخ بازنگری: 11 خرداد 1404، تاریخ پذیرش: 20 خرداد 1404 | ||
چکیده | ||
پیشینه و اهداف: همه ساله زلزله به عنوان یک بحران و یکی از بلایای طبیعی که تقریبا غیر قابل پیشبینی به شمار میرود، خسارات جبران ناپذیر جانی و مالی را متحمل بشریت مینماید. از این رو بهتر است راهکارهایی نوین بر اساس روشهای جدید علمی و تجربیات گذشته، ارائه و پیادهسازی شود. مدیریت این گونه بحرانهای مخاطرات و بلایای طبیعی به سه مرحله پیش از وقوع، هنگام وقوع و پس از وقوع آن تقسیم میشود. نجات، جزو مراحل پس از وقوع حادثه است که میتوان با مطالعه و بررسی پیش از وقوع حادثه به ارائه راهکاری جهت بهبود عملکرد نجات در رخداد آن در پس از وقوع زمینلرزه رسید. در این مقاله سعی میشود راهکاری با استفاده از هوش مکانی (Geo-AI) برای نجات پس از زمینلرزه ارائه شود. روشها: در این پژوهش با بهرهگیری از هوش مکانی (Geo-AI) و شبیهسازی زمینلرزهای فرضی راهکاری جهت ارتقا و تقویت نجات در وقوع زمینلرزه پیشنهاد میشود. در این روش زمینلرزهای فرضی با استفاده از سناریو شناور جایکا در تهران شبیهسازی شده است و در آن 48 امدادرسان در قالب 6 تیم نجات در محدوده مطالعاتی در نظر گرفته میشود. تیمهای مذکور با استفاده از یک سیستم اطلاعات مکانی هوشمند تقویتی، به گونهای به فعالیتهای جستجو و نجات اختصاص مییابند که در زمان کمتری، نجات بیشتر و کارآمدتری نسبت به حالت تجربی انجام شود. در مدل هوش مکانی ارائه شده از بخش یادگیری تقویتی هوش مصنوعی بهره گرفته میشود و به کمک مدل ایجاد شده به ارتقای عملیات جستجو و نجات در طی استفاده از مدل پیشنهادی برای بعد از رخداد زمینلرزه دست مییابد. در این مدل با استفاده از طراحی تابعی از جمیع پارامترهای موثر در نجات پس از زمینلرزه، در هوش مکانی تقویتی به بهبود عمکرد نجات در زمان رخداد زمینلرزه پرداخته میشود. یافتهها: با توجه به ماهیت فعالیتهای گروههای نجات و عدم امکان قرارگیری محققان در شرایط واقعی پس از زمینلرزه، شبیهسازی رخداد آن به منظور فراهم نمودن اطلاعات مکانی و توصیفی منطقه انجام فعالیت انجام میشود. در این شبیهسازی تعیین فعالیتهای مورد نیاز نجات و تهیه اطلاعات موقعیتی و توصیفی تیمهای نجات مدنظر قرار گرفته است. همچنین شبیهسازی رخداد زمینلرزه برای بدست آوردن برآورد تقریبی خسارات سازهای و انسانی در یک بخشی از شهر تهران انجام شده است. بدیهی است که فعالیتها دارای اولویتها و اهمیتهای مختلفی هستند. با توجه به مطالعات انجام شده و فرضیات مدنظر مدل پیشنهادی، در این پژوهش برای بررسی مدل ارائه شده 48 امدادرسان مد نظر قرارگرفتند و ابتدا در نزدیکترین مرکز مدیریت بحران منطقه مطالعاتی مستقر شدند و سپس تخصیص هوشمند فعالیتهای نجات به افراد نجاتگر صورت میگیرد. نتیجهگیری: استفاده از مدل پیشنهادی در این مقاله جهت شبیهسازیهای پژوهش حاضر و نیز پیادهسازی ساختار فعالیتهای نجات و تیمهای جستجو و نجات، راهکاری نوین در راستای بهبود کیفیت نجات پس از زمینلرزه خواهد بود. با بررسیهای انجام شده، مشخص شد پارامترهایی نظیر مدت زمان زنده ماندن در زیر آوار، مدت زمان انجام فعالیت نجات، فاصله افراد تیمهای نجات تا مکان فعالیتها، سرعت افراد هنگام حرکت به سمت هدف بسیار اهمیت دارد. نتایج حاصله از اجرای مدل هوشمند پیشنهادی این پژوهش در مقایسه با عدم استفاده از مدل پیشنهادی، بهبود 642/2 برابری تخصیص صورت پذیرفته را نشان داده است. | ||
کلیدواژهها | ||
هوش مکانی؛ بلایای طبیعی؛ هوش مصنوعی؛ زمین لرزه؛ نجات | ||
عنوان مقاله [English] | ||
A Geo-AI Approach in the Post-Earthquake Rescue | ||
نویسندگان [English] | ||
N. Bahrami1؛ M. Argany1؛ A. D. Boloorani1؛ A.r. Vafaeinejad2 | ||
1Department of Remote Sensing and GIS, Faculty of Geography, Tehran University, Tehran, Iran | ||
2Department of Surveying Engineering, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran | ||
چکیده [English] | ||
Background and Objectives: Earthquakes, among the most unpredictable and devastating natural disasters, result in significant human casualties and financial losses worldwide each year. Their sudden occurrence and destructive potential categorize them as critical crises that demand efficient and innovative management strategies. Contemporary crisis management practices emphasize three key phases: preparedness (before the event), response (during the event), and recovery (after the event). Among these, rescue operations, which are part of the response phase, play a vital role in saving lives and mitigating further damage. However, given the urgency and complexity of rescue efforts, enhancing their effectiveness through innovative methods is essential. This study introduces a novel approach that leverages spatial intelligence—specifically Geo-Artificial Intelligence (Geo-AI)—to optimize rescue operations in the aftermath of an earthquake. Methods: This research proposes a Geo-AI–based framework to enhance rescue performance following an earthquake. The approach involves simulating a hypothetical earthquake scenario in Tehran using the Japan International Cooperation Agency (JICA) floating scenario model. A total of 48 rescuers are organized into six teams within the designated study area. These teams are tasked with conducting search and rescue missions facilitated by an augmented intelligent spatial information system. Unlike traditional or manually assigned rescue operations, the proposed model employs reinforcement learning—a subfield of artificial intelligence—to dynamically allocate resources and optimize operational decisions in real-time. The design incorporates a comprehensive set of variables known to influence post-earthquake rescue effectiveness, including team location, response time, victim survivability, and route accessibility. The aim is to minimize response times and maximize the number of successful rescues using spatially informed decision-making. Findings: Due to the inherent unpredictability of earthquakes and the logistical constraints of studying rescue operations in real-world post-disaster settings, this research relies on simulation to replicate realistic conditions. The simulation environment provides detailed spatial and descriptive information regarding both the affected area and the status of rescue teams. Furthermore, it enables estimation of structural and human damage resulting from the hypothetical earthquake. Based on these simulated conditions, rescue operations are prioritized according to urgency and resource availability. All 48 rescuers are initially positioned at the nearest crisis management center and are subsequently deployed based on the optimized task allocation strategy generated by the Geo-AI model. The simulation results show that using the proposed model significantly improves the allocation efficiency of rescue teams. Conclusion: The Geo-AI–driven rescue model presented in this study offers a promising new avenue for enhancing the quality and efficiency of post-earthquake search and rescue efforts. Simulation results demonstrate that variables such as survival time under rubble, task completion time, proximity of rescuers to affected sites, and travel speed are critical to the effectiveness of rescue missions. Implementation of the intelligent model led to a 2.642-fold improvement in task allocation efficiency compared to traditional methods. These findings highlight the transformative potential of integrating artificial intelligence and spatial data systems into disaster response frameworks. | ||
کلیدواژهها [English] | ||
Geo-AI, Natural Hazards, Artificial Intelligence, Post-Earthquake, Rescue | ||
مراجع | ||
[1] Hosseini, Maziar. 2008. Crisis Management. Tehran: Shahr Publishing House [In Persian]. [2] Mezyabadi, Shahryar. 2012. Search and rescue in collapsed buildings (rubble removal). Tehran: Nakhl [In Persian]. [3] N. Bahrami, 2019. Using Tabu Search Algorithm and Geospatial Information System for Managing of the Relief and Rescue Teams, Journal of Geomatics Science and Technology 8 (3), 179-18. [4] N. Bahrami, M. Argany, N. Neysani Samani, A.R. Vafaei Nejad, 2021. Designing a Context-aware Recommender System in the Optimization of the Relief and Rescue by Ant Colony Optimization Algorithm and Geospatial Information System, Journal of Geomatics Science and Technology 11 (2), 153-162. [5] Giwehchi, Saeed et al. 2013. Locating temporary housing after an earthquake using GIS and AHP technique, case study: Region Six of Shiraz. Urban and regional studies and research. Year 5. Issue 17 [In Persian]. [6] Najavan, Mehdi. Babak Omidar. Ismail Salehi. 2013. Locating temporary housing using fuzzy algorithms; Case study: District One of Tehran Municipality. Issue 31 [In Persian]. [7] Elnaz Ali Asl Khiabani Abolghasem Sadeghi Niaraki Mustafa Ghodousi, Routing of relief after an earthquake (Case study: Part of District One of Tehran) Routing of relief after an earthquake (Case study: Part of District One of Tehran), Source: Journal of Rescue and Relief, Volume 9 Winter 2017 (2018) Issue 4 (36) [In Persian]. [8] Tehran City Crisis Prevention and Management Organization, Deputy for Prevention and Risk Reduction. 2008. Rapid Earthquake Damage and Casualty Estimation System in Tehran City [In Persian]. [9] Comprehensive National Rescue and Relief Plan. 2003 [10] Rasekh, A., Vafaeinezhad, A. R. (2012), “Developing a GIS Based Decision Support System for Resource Allocation in Earthquake Search and Rescue Operation”, Computational Science and Its Applications – ICCSA 2012, Volume 7334 of the series Lecture Notes in Computer Science PP. 275-285. Springer [11] Vafaeinejad, Alireza et al. 2009. A New Method for Modeling and Planning Human Group Activities in Space-Time. Tehran: Amir Kabir, Civil Engineering. Year 41. Number 1. [12] Vafaeinezhad, A. R.; A. A. Alesheikh, J. Nouri, 2010: Developing a spatio-temporal model of risk management for earthquake life detection rescue team. International Journal of Environmental Science & Technology. March 2010, Volume 7, Issue 2, pp 243–250. [13] N Bahrami, M Argany, NN Samani, AR Vafaeinejad, Designing a context-aware recommender system in the optimization of the relief and rescue. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Volume 42, Pages 171-177. DOI: 10.1109/ICDCS47774.2020.00033 [15] Zhaojia Tang, Ping Wang, Yong Wang, Changgeng Wang, Yu Han, 2022. Distributed Small-Step Path Planning and Detection Method for Post-earthquake Robot to Inspect and Evaluate Building Damage. Published in Frontiers in Neurorobotics 15 August 2022, Engineering, Environmental Science. [16] Xiaoyan Li, Xuedong Liang, Xia Wang, Rong Wang, Lingli Shu, Wentao Xu, 2023, Deep reinforcement learning for optimal rescue path planning in uncertain and complex urban pluvial flood scenarios, Applied Soft Computing 144 (2023) 110543 [17] Juil Jeon, Myungin Ji, Jungho Lee, Kyeong-Soo Han and Youngsu Cho, 2024, Deep Learning-Based Emergency Rescue Positioning Technology Using Matching-Map Images, Remote Sens. 2024, 16, 4014. https://doi.org/10.3390/rs16214014 [18] Jin Zhang, Hao Xu, Ding Liu and Qi Yu, 2025, Advancing Dynamic Emergency Route Optimization with a Composite Network Deep Reinforcement Learning Model, Systems 2025, 13, 127. https://doi.org/10.3390/systems13020127 [19] Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction (2nd ed.). MIT Press. [ISBN: 978-0262039246]. DOI: 10.1109/MSP.2017.2743240 [21] Schulman, J., et al. (2017). Proximal Policy Optimization Algorithms. arXiv preprint arXiv:1707.06347. [22] Mnih, V., et al. (2015). Human-level control through deep reinforcement learning. Nature. DOI: 10.1038/nature14236 [23] Lillicrap, T. P., et al. (2015). Continuous control with deep reinforcement learning. arXiv:1509.02971. [24] Jalumuru Nalini, P. M. Khilar, 2021. Reinforced Ant Colony Optimization for Fault Tolerant Task Allocation in Cloud Environments, Wireless Personal Communications (2021) 121:2441–2459. https://doi.org/10.1007/s11277-021-08830-4 [25] Minal Shahakar, S. A. Mahajan, Lalit Patil, 2024, Optimizing System Resources and Adaptive Load Balancing Framework Leveraging ACO and Reinforcement Learning Algorithms, J. Electrical Systems 20-1s (2024): 244 – 256 [26] Cl´audio Alves, Israel Mendonc, Vanessa de Almeida Guimar˜aes, Pedro Henrique Gonz´alez, 2024, ACO with Reinforcement Learning applied to Rescues Operations on Urban Forests, 2024 IEEE Congress on Evolutionary Computation (CEC) | 979-8-3503-0836-5/24/$31.00 ©2024 IEEE | DOI: 10.1109/CEC60901.2024.10612050 [27] Izadi, Arman. 2010. A Review of Disaster Management Fundamentals. Tehran: Rescue and Relief Organization. [28] N Bahrami, M Argany, M Jelokhani Neyaraki, A Vafaeinezhad, Providing a spatial approach in the rescue and relief management after the earthquake, Environmental Management Hazards 6 (2), 117-129. [29] Vafaeinezhad, A.R. Alesheikh, A.A. Hamrah, M. Reza Nourjou, R. Shad, R. (2009), “Using GIS to Develop an Efficient Spatio-temporal Task Allocation Algorithm to Human Groups in an Entirely Dynamic Environment Case Study: Earthquake Rescue Teams”. Computational Science and Its Applications – ICCSA 2009. Volume 5592 of the series Lecture Notes in Computer Science. pp 66-78. 2009. [30] Sharifi Sadeh, Mehrab. 2010. Disaster Assessment. Scientific Quarterly Journal of Rescue and Relief. Year 2. Issue 4 [In Persian]. [31] Watkins, C.J.C.H. and Dayan, P. (1992) Q-Learning. Machine Learning, 8, 279-292. http://dx.doi.org/10.1007/BF00992698 | ||
آمار تعداد مشاهده مقاله: 70 تعداد دریافت فایل اصل مقاله: 19 |