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Abstract. For a set X and a topological space (X,τ), let ΓX (τ) be a graph with vertex set τ \ {∅, X}
in which two vertices A1 and A2 are adjacent just when A1 ∪ A2 = X. In this paper and among some
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determine their exact values in general cases or in some special topological spaces like T1.
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1 Introduction

A topological space is a set endowed with a structure, called a topology, which allows
defining continuous deformation of subspaces and (more generally) all kinds of continuity.
Euclidean spaces and (more generally) metric spaces are examples of topological spaces, as
every distance or metric defines a topology, see [7] for more details. Formally, let X be a set
and τ be a family of subsets of X. Then τ is called a topology on X if the following three
properties are satisfied.

1) Both the empty set ∅ and the whole set X are elements of τ.
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2) Any union of elements of τ is an element of τ.

3) Any intersection of finitely many elements of τ is an element of τ.

If τ is a topology on X, then the pair (X,τ) is called a topological space and each member of
τ is an open set. A T1 space is a topological space in which, for every pair of distinct points,
each has a neighborhood (an open set containig it) not containing the other point. There are
several graphs assigned to topological spaces in litherature and vice versa, see [2], [5] and [8].
Let (X,τ) be a topological space. The graph ΓX(τ) is a graph with vertex set τ \ {∅, X} in
which two vertices A1 and A2 are adjacent just when A1 ∪ A2 = X. Let Γ be a finite and simple
graph with vertex set V(Γ) and edge set E(Γ). When two vertices u and v are adjacent, we can
denote it by the notation u ∼ v. The set NΓ(u) denotes the (open) neighborhood of u ∈ V(Γ),
which means the set of all adjacent vertices to u in Γ and the degree of u is degΓ(u) = |NΓ(u)|,
see [10]. An isolated vertex is a vertex of degree zero. For a subset of vertices X ⊆ V, Γ[X]

denotes the subgraph induced by X. Note that X is an independent set in Γ if and only if
Γ[X] contains no edge. A clique C in Γ is a subset of vertices of Γ such that every two distinct
vertices in C are adjacent and hence, the induced subgraph of Γ on it is a complete graph.
The clique number of Γ, ω(Γ), is the maximum size among all cliques of Γ. A matching in Γ
is a set of pairwise non-incident edges of E(Γ) and, a perfect matching is a matching in which
every vertex of the graph is incident to exactly one edge of the matching. A (proper vertex)
k-coloring of Γ is an assignment of k colors to the vertices of Γ in such a way that no pair
of adjacent vertices receive the same color, and the chromatic number χ(Γ) is the minimum
integer k for which a k-coloring for Γ exists. Similarly, a (proper) edge coloring of a graph
is an assignment of colors to the edges such that no two incident edges received the same
color and the minimum required number of colors for such coloring is called the chromatic
index (or the edge chromatic number) of the graph and is denoted by χ′(Γ). A topological
index (a molecular structure descriptor) for a graph Γ is a numerical quantity invariant under
automorphisms of Γ and it does not depend on the labeling or pictorial representation of the
graph. One of the oldest and most thoroughly studied distance based topological index is the
Wiener index, and the first Zagreb index is the oldest and most studied vertex-degree based
topological indical index. The Wiener index W(Γ) of Γ and the first Zagreb index Z1(Γ) of Γ
are defined as follows (see [11] and [4], respectively)

W(Γ) = ∑
{u,v}⊆V(Γ)

dΓ(u,v) , Z1(Γ) = ∑
u∈V(Γ)

degΓ(u)
2,

in which dΓ(u,v) denotes the distance of two vertices u and v in Γ. For a review in these
subjects and related subjects, one can see [1], [3], [6], [8] and [9]. In this paper and among
some othe results, we study the maximum and minimum degrees, the matching number, the
chromatic number, the chromatic index, the planarity, the Wiener index and the Zagreb index
of ΓX(τ) and we determine their exact values in general cases or in some special topological
spaces like T1.
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2 Main results

Proposition 2.1. Let X be a set and τ1,τ2 be two topologies on X. Then, τ1 is finer (stronger or
larger) topology than τ2 if and only if ΓX(τ2) is an induced subgraph of ΓX(τ1).

Proof. Assume that τ1 is a finer topology than τ2 and hence, τ2 ⊆ τ1. Thus, τ2 \ {∅, X} ⊆
τ1 \ {∅, X} which means that the vertex set of ΓX(τ2) is a subset of the vertex set of ΓX(τ1).
Let G and H be two vertices in the vertex set of ΓX(τ2) and asuume that they are adjacent in
the graph ΓX(τ1). This means that G ∪ H = X (in τ1). The relation G ∪ H = X implies that
G and H are two adjacent vertices in ΓX(τ2). Thus, ΓX(τ2) is an induced subgraph of ΓX(τ1).
The converse is similarly done.

Proposition 2.2. Let (X,τ1) and (Y,τ2) be two topological spaces and f : X → Y be a (continius)
function such that f−1(U) is a non-trivial open set in X for each non-trivial open set U in Y. Then,
the function F : V

(
ΓY(τ2)

)
→ V

(
ΓX(τ1)

)
defined by F(U) = f−1(U) is a graph homomorphism.

Proof. For this purpose, we must show that F(G) and F(H) are adjacent in ΓX(τ1) for each
pair of adjacent vertices G and H in ΓY(τ2). This is certainly satisfied, beceause when G and
H are two adjacent vertices in ΓY(τ2), then we have G ∪ H = Y and hence,

F(G) ∪ F(H) = f−1(G) ∪ f−1(H) = f−1(G ∪ H) = f−1(Y) = X,

which implies that F(G) and F(H) are two adjacent vertices in ΓX(τ1).

Proposition 2.3. Let (X,τ) be a topological space and G1, G2 be two vertices in ΓX(τ) (i.e., two
non-trivial open sets) such that G1 ⊆ G2. Then, we have degΓX (τ)(G1) ≤ degΓX (τ)(G2).

Proof. Let H ∈ τ be a neighbour of G1 in the graph ΓX(τ). This means that G1 ∪ H = X. Since
G1 ⊆ G2, thus we have

X = G1 ∪ H ⊆ G2 ∪ H ⊆ X,

which implies that G2 ∪ H = X. Thus, H is a neighbour of G1 in ΓX(τ). This implies that
NΓX (τ)(G1) ⊆ NΓX (τ)(G2) and hence, degΓX (τ)(G1) ≤ degΓX (τ)(G2).

Proposition 2.4. Let (X,τ) be a T1 topological space. Then, for each vertex G in ΓX(τ) we have
degΓX (τ)(G) ≥ 2

|G|− 1. Especially, degΓX (τ)(G) ≥ |G|.

Proof. Since G is a vertex of the graph ΓX(τ), we have G ̸= ∅. Let {pi1
, pi2

, ..., pis
} be a non-

empty subset of G. Since the topology is T1, the finite set {pi1
, pi2

, ..., pis
} is a closed set and

hence, {pi1
, pi2

, ..., pis
}c ∈ τ. Note that {pi1

, pi2
, ..., pis

}c /∈ {∅, X} and {pi1
, pi2

, ..., pis
}c ∪ G = X.

This means that the vertex G is adjacent to the vertex {pi1
, pi2

, ..., pis
}c. Since the set G has 2|G|

subsets and one of these subsets is the emptyset (which is not a vertex of ΓX(τ)), the results
directly follows.

Proposition 2.5. Let X be an arbitrary set with at least two elemnts and endowed with discrete
topology. Then, for each vertex G in ΓX(τ) we have degΓX (τ)(G) = 2|G| − 1.

185



Behtoei et al. / Journal of Discrete Mathematics and Its Applications 10 (2025) 183–194

Proof. Note that τ = P(X) which is the power set of X. Let H ∈ τ be a vertex of ΓX(τ) which
is adjacent to G. Thus, G ∪ H = X and hence, Gc ⊆ H. Let Ĥ = H \ Gc which implies that
Ĥ ⊆ G. Since H ̸= X, we have Ĥ ̸= G. Thus, Ĥ ∈ P(G) \ {G}. This means that each neighbour
H of G in ΓX(τ) corresponds to a member Ĥ of P(G) \ {G} and vice verca. Therefore,

degΓX (τ)(G) = |P(G) \ {G}| = 2|G| − 1,

which completes the proof.

Corollary 2.6. Let (X,τ) be a T1 topological space. Then, the maximum degree and the mnimum
degree of the graph ΓX(τ) is determined as follows.

i) when X is a finite set. Then, ∆
(
ΓX(τ)

)
= 2

|X|−1 − 1 and δ
(
ΓX(τ)

)
= 1.

ii) when X is an infinite set. Then, ∆
(
ΓX(τ)

)
= ∞ and δ

(
ΓX(τ)

)
= 2k − 1 in which k = inf{ |G| :

G ∈ τ, G ̸= ∅}.

Proof. At first, assume that X is a finite set and let x ∈ X. Note that since X is a finite set
and the topology is T1, it is a discrete topology, i.e. τ = P(X), the power set of X. Thus, by
considering Proposition 2.3 and Proposition 2.5, we see that

δ(ΓX(τ)) = degΓX (τ)({x}) = 21 − 1 = 1,

and

∆(ΓX(τ)) = degΓX (τ)(X \ {x}) = 2|X|−1 − 1.

Now assume that X is an infinite set. Let p ∈ X be an arbitrary point. Then, {p}c = X \ {p}
is a non-trivial open set and obviously it is an infinite set. Now by Propositions 2.3 and 2.4,
we see that

∆(ΓX(τ)) = degΓX (τ)(X \ {p}) ≥ |X \ {p}| = ∞.

For the minimum degree, if each vertex G of ΓX(τ) is an infinite (open) set, then Proposi-
tion 2.4 implies that degΓX (τ)(G) = ∞ and hence,

δ
(
ΓX(τ)

)
= ∞ = inf{ |G| : G ∈ τ, G ̸= ∅}.

Otherwise, there exists at least one finite and non-trivial open set in the topology (a vertex in
ΓX(τ)) and hence, we can define the integer k as

k = min{ |G| : G ∈ τ, G ̸= ∅} = inf{ |G| : G ∈ τ, G ̸= ∅}.

Now Proposition 2.3 implies that δ
(
ΓX(τ)

)
= degΓX (τ)(G) in which G is a member of τ with

|G| = k.

Now, we state the following corollaries.
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Corollary 2.7. If X is an arbitrary non-empty finite set with the discrete topology τ, then the size of
the graph ΓX(τ) is given by

|E(ΓX(τ))| =
1
2

(
3|X| − 2|X|+1 + 1

)
.

Proof. By using Proposition 2.5, the binomial expansion (a + b)n = ∑n
i=0 (

n
i )aibn−i and the

Handshakin Lemma (the sum of the vertex degrees equals twice the number of edges in each
graph), we see that

|E(ΓX(τ))| =
1
2 ∑

G∈P(X)\{∅,X}
degΓX (τ)(G)

=
1
2 ∑

G∈P(X)\{∅,X}
(2|G| − 1)

=
1
2

|X|−1

∑
k=1

(
|X|
k

)
(2k − 1)

=
1
2

( |X|

∑
k=0

(
|X|
k

)
(2k − 1) −

(
|X|
0

)
(20 − 1)−

(
|X|
|X|

)
(2|X| − 1)

)

=
1
2

( |X|

∑
k=0

(
|X|
k

)
2k −

|X|

∑
k=0

(
|X|
k

)
1 − 0 − (2|X| − 1)

)

=
1
2

(
(2 + 1)|X| − (1 + 1)|X| − (2|X| − 1)

)
=

1
2

(
3|X| − 2|X|+1 + 1

)
.

The proof is complete.

Corollary 2.8. Let X be an arbitrary non-empty finite set with the discrete topology. Then the first
Zagreb index of ΓX(τ) is equal to

5|X| − 4|X| − 2
(
3|X|)+ 3

(
2|X|)− 1.
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Proof. Again, by Proposition 2.5 and by the definition of the first Zagreb index, we obtain

Z1(ΓX(τ)) = ∑
G∈P(X)\{∅,X}

(
degΓX (τ)(G)

)2

= ∑
G∈P(X)\{∅,X}

(
2|G| − 1

)2

=
|X|−1

∑
k=1

(
|X|
k

)(
2k − 1

)2

=
|X|

∑
k=0

(
|X|
k

)(
2k − 1

)2 −
(
|X|
0

)(
20 − 1

)2 −
(
|X|
|X|

)(
2|X| − 1

)2

=
|X|

∑
k=0

(
|X|
k

)(
22k − 2 × 2k + 1

)
−
(
2|X| − 1

)2

= (4 + 1)|X| − 2 × (2 + 1)|X| + (1 + 1)|X| −
(
2|X| − 1

)2

= 5|X| − 2 × 3|X| − 4|X| + 3 × 2|X| − 1.

Proposition 2.9. Assume that (X,τ) is a T1 topological space. If X is infinite, then the Wiener index
of ΓX(τ) is also infinite. Otherwise, the Wiener index of ΓX(τ) is equal to

2
(

2|X| − 2
2

)
− 2|X|−1 + 1.

Proof. When X is infinite, then for each pair of distinct points p,q ∈ X, two vertices {p}c

and {q}c are adjacent in ΓX(τ). Hence, |E(ΓX(τ))| is infinite and then the fact W(ΓX(τ)) ≥
|E(ΓX(τ))| implies that the Wiener index of ΓX(τ) is infinite. Now suppose that X is a finite
set and hence, τ = P(X) is the discrete topology. Assume that X = {x1, x2, ..., xn}. Note that
|P(X)| = 2n and hence, the graph ΓX(τ) has 2n − 2 vertices. For the computation of the the
Wiener index of ΓX(τ) we must consider the distance of (2n−2

2 ) (non-ordered) pairs of vertices.
By the definition of ΓX(τ), we have dΓX (τ)(G, H) = 1 if and only if G ∪ H = X. By Corollary
2.7, there are

1
2

(
3n − 2n+1 + 1

)
(non-ordered) pairs of vertices in ΓX(τ) whose distance is equal to 1.
Now let G and H be two non-adjacent vertices in ΓX(τ), and hence, G ∪ H ̸= X.

If G ∩ H ̸= ∅, then there exists a point x ∈ G ∩ H. Then, we have G ∪ {x}C = X = H ∪ H
which shows that {x}c is a common neighbor of G and H. This implies that dΓX (τ)(G, H) = 2.
The converse is true too. Indeed, from the equation dΓX (τ)(G, H) = 2 we deduce that G and
H are non-adjacent (hence, G ∪ H ̸= X) and there exists some common neighbor A for them.
Thus, G ∪ A = X = H ∪ A implies that Ac ⊆ G and Ac ⊆ H. Thus, Ac ⊆ G ∩ H which implis
that G ∩ H ̸= ∅.
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If G ∩ H ̸= ∅, then for two arbitrary (distinct) points x ∈ G and y ∈ H we have

G ∪ {x}c = {x}c ∪ {y}c = {y}c ∪ H = X,

which implies that dΓX (τ)(G, H) = 3. Therefore, for each pair of vertices G, H in ΓX(τ) we
have dΓX (τ)(G, H) ≤ 3. Specially, we have dΓX (τ)(G, H) = 3 if and only if G ∪ H ̸= X and
G ∩ H = ∅. Let G, H be two vertices in ΓX(τ) whose distance is 3 and hence, G ∪ H ̸= X and
G ∩ H = ∅. Let K = G ∪ H and k = |K|. Since G ̸= ∅ and H ̸= ∅, we deduce k = |K| ≥ 2. Also,
G ∪ H ̸= X implies that k ≤ n − 1. Hence, 2 ≤ k ≤ n − 1. Note that K = G ∪ H and G ∩ H = ∅
indicates that G ∪ H is a partition of K into two parts. By considering the Stirling numbers of
the second type, it is well known that S(k,2) = 2k−1 − 1. Also, note that there are (n

k) subsets
of X with cardinality k. Thus, the number of the pairs of vertices with distance 3 in ΓX(τ) is
equal to

n−1

∑
k=2

(
n
k

)
S(k,2) =

n−1

∑
k=2

(
n
k

)
(2k−1 − 1)

=
n

∑
k=0

(
n
k

)
(2k−1 − 1) −

(
n
0

)
(2−1 − 1)−

(
n
1

)
(20 − 1)−

(
n
n

)
(2n−1 − 1)

=
1
2

n

∑
k=0

(
n
k

)
2k −

n

∑
k=0

(
n
k

)
+

1
2
− (2n−1 − 1)

=
1
2
(
3n − 3(2n) + 3

)
.

Hence, the number of the pairs of vertices with distance 2 in ΓX(τ) is equal to(
2n − 2

2

)
− 1

2

(
3n − 2n+1 + 1

)
− 1

2
(
3n − 3(2n) + 3

)
=

(
2n − 2

2

)
−
(

3n − 5(2n−1) + 2
)

.

Therefore, for the Wiener index of ΓX(τ) we have

W(ΓX(τ)) =
1
2

(
3n − 2n+1 + 1

)
× 1 +

((
2n − 2

2

)
−
(

3n − 5(2n−1) + 2
))

× 2

+
1
2
(3n − 3(2n) + 3)× 3

= 2
(

2n − 2
2

)
− 2n−1 + 1.

The proof is complete.

Theorem 2.10. Let (X,τ) be a T1 topological space. Then, the chromatic number of the graph is given
by χ

(
ΓX(τ)

)
= |X|.

Proof. For each vertex G in ΓX(τ), we have G ̸= X and hence, there exists a point pG ∈ X
such that pG /∈ G. By the Axiom of choice (applied for the sets Gc), for each G ∈ τ \ {∅, X}
we can select a point pG with the condition pG /∈ G. Since X is T1, for each p ∈ X we have
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{p}c ∈ τ \ {∅, X} and hence, for G = {p}c the only possible choice for pG is p. Thus, each
point of X will be selected for at least one vertex of ΓX(τ). Now define the (coloring) function
f : V

(
ΓX(τ)

)
→ X as f (G) = pG for each G ∈ V

(
ΓX(τ)

)
. We show that f is a proper coloring.

Let G and H be two adjacent vertices in ΓX(τ). Thus, we have G ∪ H = X. Hence, from
the fact pG /∈ G we deduce that pG ∈ H, and from the fact pH /∈ H we deduce that pH ∈ G.
Since, pG /∈ G and pH /∈ H, we have pG ̸= pH and this means that f (G) ̸= f (H). Therefoe,
f is a proper coloring and hence, χ

(
ΓX(τ)

)
≤ |X|. The set { {p}c : p ∈ X} induces a clique

in ΓX(τ) because for each pair of distinct points p and q we have {p}c ∪ {q}c = X. Thus, in
each proper coloring of ΓX(τ) all of the colors assigned to these vertices must be distinct and
hence, χ

(
ΓX(τ)

)
≥ |X|. Thus, we have χ

(
ΓX(τ)

)
= |X| and the proof is complete.

Theorem 2.11. Assume that (X,τ) is a T1 topology. Then, ΓX(τ) is a planar graph if and only if
2 ≤ |X| ≤ 3.

Proof. If |X| ≥ 5, then the set { {p}c : p ∈ X} induces a complete graph with at least 5 vertices
and hence, K5 is a subgraph of ΓX(τ) which implies that ΓX(τ) is not planar. Hence, assume
that |X| ≤ 4. Thus, (X,τ) is a finite T1 topology and hence, it is a discrete topology. For two
cases |X|= 2 and |X|= 3, let X = {a,b} and X = {a,b, c}, respecively. Then, the corresponding
graph of these two cases are deficted in Figure 1 and obviously these graphs are planar.

{a} {b} {a} {b,c} {a,c} {b}

{a,b} {c}

Figure 1.

For the remaining case |X| = 4, let X = {a,b, c,d} and note that τ = P(X). Now Consider
the graph ΓX(τ) as shown in Figure 2. Let

u1 = {a, c}, u2 = {a, c,d}, u3 = {a,d}, v1 = {b,d}, v2 = {b, c,d}, v3 = {a,b,d},

and consicer the folloing 9 paths in ΓX(τ):

u1 ∼ v1 , u1 ∼ v2 , u1 ∼ v3

u2 ∼ v1 , u2 ∼ v2 , u2 ∼ v3

u3 ∼ {a,b, c} ∼ v1 , u3 ∼ v2 , u3 ∼ {b, c} ∼ v3

Two prtite sets of vertices {u1,u2,u3} and {v1,v2,v3} toghether with these 9 paths, provide a
subdivision of the complete bipartite graph K3,3 in ΓX(τ). This means that ΓX(τ) is not planar
and the proof is complete.
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{b,c,d} {a,c,d}

{a,b,c} {a,b,d}

{a,d} {b,c}

{c,d}

{a,b}

{a}

{d}

{c}

{b}
{b,d} {a,c}

Figure 2. The graph Γ{a,b,c,d}

(
P({a,b, c,d})

)
.

Theorem 2.12. Let (X,τ) be a discrete topological space. Then, for the matching number (the edge
independence number) of ΓX(τ) we have α′ (ΓX(τ)) = 2|X|−1 − 1.

Proof. Since τ = P(X), for each A ⊆ X we have A ∈ τ and Ac ∈ τ. Note that A ∪ Ac = X for
each A /∈ {∅, X} and hence, two vertices A and Ac are adjacent in ΓX(τ). The cardinality of
P(X) is 2|X| and all of it’s members can be partioned into 2|X|

2 complement pairs like A, Ac in

which one of these pairs is ∅, X. Thus, the vertex set of ΓX(τ) can be partioned into 2|X|
2 −

1 adjacent pairs of vertices which are. This determines a perfect matching and the result
follows.

Theorem 2.13. Let (X,τ) be an arbitrary topological space. Then, for the chromatic index (the edge
chromatic number) of ΓX(τ) we have χ′ (ΓX(τ)) ≤ 2|X|−1 − 1. Moreover, when (X,τ) is a discrete
topological space, then χ′ (ΓX(τ)) = 2|X|−1 − 1 and hence, the mentioned upper bound is sharp.

Proof. Consider the power set P(X) of X and let

M =
{
{A, Ac} : A ∈ P(X), A ̸= ∅, A ̸= X

}
.

Note that |M| = 2|X|−1 − 1. Now define (the edge coloring function) f : E
(
ΓX(τ)

)
→ M as

f (GH) = {G ∩ H, (G ∩ H)c} for each edge GH in ΓX(τ). We show that f is a (proper) edge
coloring. Let GH and GK be two distinct and adjacent edges in ΓX(τ). Thus, we have H ̸= K,
G ∪ H = X and G ∪ K = X. Since G ∪ H = X, we have Gc ⊆ H and similarly Gc ⊆ H. Hence,
H = Gc ∪ H1 and K = Gc ∪ K1 in which H1 ⊆ G and K1 ⊆ G. Note that,

G ∩ H = H1, G ∩ K = K1,
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and

f (GH) = {G ∩ H, (G ∩ H)c} = {H1, Hc
1}, f (GK) = {G ∩ K, (K ∩ K)c} = {K1,Kc

1}.

Suppose (on the contrary) that we have f (GH) = f (GK). Then, we must have

{H1, Hc
1} = {K1,Kc

1}.

Note that H1 ∈ {H1, Hc
1} and hence H1 ∈ {K1,Kc

1}. Since K1 ⊆ G, we have Kc
1 ⊇ Gc ̸= ∅. Thus,

the fact ∅ ̸= H1 ⊆ G implies that H1 ̸= Kc
1 and hence, H1 = K1. Therefore, we have

G ∪ H = X = G ∪ K , G ∩ H = H1 = K1 = G ∩ K.

Let h ∈ H. if h ∈ G, then h ∈ H ∩ G = K ∩ G and hence, h ∈ K. Otherwise, h /∈ G and the fact
h ∈ H ⊆ H ∪ G = K ∪ G implies that h ∈ K. In each case, we have h ∈ K and hence, H ⊆ K.
Similarly, we obtain K ⊆ H. Thus, H = K, which is a contradiction. This contradiction shows
that f (GH) = f (GK) is impossible and hence, f is a proper edge coloring of ΓX(τ) with the
color set M. Thus, χ′ (ΓX(τ)) ≤ |M| = 2|X|−1 − 1.

Now let τ be the discrete topology, i.e. τ = P(X). Note that in each proper (and opti-
mal) edge coloring, adjacent edges must ereceived different colors and hence, χ′(ΓX(τ)

)
≥

∆
(
ΓX(τ)

)
. By Theorem 2.6, the maximum degree of ΓX(τ) is 2|X|−1 − 1. Therefore, we have

χ′(ΓX(τ)
)
≥ 2|X|−1 − 1 and hence, χ′(ΓX(τ)

)
= 2|X|−1 − 1 in this case.

Theorem 2.14. Let (X,τ) be a topological space. Then, the following statements hold.

i) ΓX(τ) is a path if and only if τ = {∅, A, X} or τ = {∅, A, Ac, X} for some ∅ ̸= A ⫋ X.

ii) ΓX(τ) is a complete graph if and only if τ = {∅, A, X} or τ = {∅, A, Ac, X} in which A /∈
{∅, X}.

iii) ΓX(τ) is a complete bipartite graph if and only if τ = {∅, A, Ac, X} for some A /∈ {∅, X}, i.e.
ΓX(τ) = K1,1.

iv) If τ is a linearly ordered set (with respect to the inclusion relation ⊆), then ΓX(τ) is an empty
graph (i.e., a graph with no edge).

Proof. At first, we prove (i). It is easy to see that for τ = {∅, A, X} the graph ΓX(τ) is the one
vertex path P1, and for τ = {∅, A, Ac, X} the graph ΓX(τ) is the two vertex path P2. Now let
GH be an arbitrary edge in ΓX(τ). Note that G ∩ H ⫋ G and G ∩ H ⫋ H. If G ∩ H ̸= ∅, then
G ∩ H is a vertex of ΓX(τ). Hence, when G ∩ H is not adjacent to any vertex, which means
that ΓX(τ) contains an isolated vertex and it is not a path. Also, when G ∩ H is adjacent to a
vertex K, then K ∪ (G ∩ H) = X and hence, K ∪ G = X = K ∪ H which means K is adjacent
to both of vertices G and H. Thus, ΓX(τ) has a triangle on three vertces G, H,K and hence,
ΓX(τ) is not a path. These facts imply that when ΓX(τ) is a path, for each pair of adjacent
vertices G and H we must have G ∩ H = ∅. Now assume that ΓX(τ) is a path. If the number
of vertices of ΓX(τ) is 1 or two, then obviously we have τ = {∅, A, X} or τ = {∅, A, Ac, X}
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for some ∅ ̸= A ⫋ X. Hence, assume (on the contrary) that ΓX(τ) is a path with at least 3
vertices. Let G, H,K be three (consequtive) vertices in ΓX(τ) , i.e. GH and HK are two edges
of ΓX(τ). Thus, G ∪ H = X and H ∪ K = X. By the previous result, we must have G ∩ H = ∅
and H ∩ K = ∅. Now G ∪ H = X and G ∩ H = ∅ imply that G = Hc, and similarly, H ∪ K = X
and H ∩ K = ∅ imply that K = Hc. Thus, G = Hc = Kc, which is a contradiction. The proof
of (i) is complete.

Now we prove (ii) and (iii). At first, note that K2 = K1,1.
It is easy to check that when τ = {∅, A, X} or τ = {∅, A, Ac, X} for some A /∈ {∅, X}, then
the graph ΓX(τ) is the complete graph K1 or K2, respectively. Assume that G and H are
two adjacent vertices in ΓX(τ). If G ∩ H ̸= ∅, then the vertex G ∩ H is non-adjacent to both
of vertices G and H which implies that ΓX(τ) neither is a complete graph nor a complete
bipartite graph. If G ∩ H = ∅, then we have H = Gc. Therefore, when ΓX(τ) is a complete
graph or a complete bipartite graph, for each pair of adjacent vertices G and H we have
H = Gc. This implies that the connected graph ΓX(τ) has two vertices, i.e. ΓX(τ) = K2.
Finally, note that when A ⫋ B ̸= X, then A ∪ B = B ̸= X. Hence, each pair of vertices in ΓX(τ)

are non-adjacent and hence, ΓX(τ) is an empty graph. This proves (iv).

3 Conclusions

In this research we define a simple graph on a general topological space whose vertices
are non-trivial open sets and two vertices are adjacent just when their union become the
whole points set. Some graphical parameters like clique and chromatic numbers are deter-
mined and its planarity is completely determined. Further works can be focused on special
topological spaces or other graphical parameters.

Acknowledgments

The authors warmly thank the anonymous referees for reading this manuscript carefully
and providing numerous valuable corrections and suggestions which improve the quality of
this paper. We would like to express our deepest gratitude and appreciation to them.

Funding

This research received no external funding.

Data Availability Statement

Data is contained within the article.

193



Behtoei et al. / Journal of Discrete Mathematics and Its Applications 10 (2025) 183–194

Conflicts of Interests

The authors declare that they have no competing interests.

References

[1] H. Ali, A. Q. Baig, M. K. Shafiq, On toplogical properties of boron triangular sheet
BTS(m,n),borophene chain B36(n) and melen chain MC(n) nanostructures, J. Disc. Math. Appl. 7
(2022) 39–61. https://doi.org/10.22061/jdma.2022.1932

[2] A. Aniyan, S. Naduvath, Subspace graph topological space of graphs, Proyecciones Journal of
Mathematics, 42 (2023) 521–532. https://doi.org/10.22199/issn.0717-6279-5386

[3] A. Behtoei, R. Zarifian, Exact double domination in subdivision, Mycielskian and middle graphs,
Commun. Combin. Optimization, Articles in Press. https://doi.org/10.22049/cco.2025.29949.2235
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