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Abstract. Let G be a simple graph. In this paper we prove the stated conjecture in [Some notes
on Sombor index of graphs, MATCH Commun. Math. Comput. Chem.93 (2025) 853-859] and state an
upper bound for the Sombor index of G in terms of its size and the smallest eigenvalue of its Sombor
matrix. Also, characterize all graphs for which the specified bound is attained.
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1 Introduction

Let G = (V(G), E(G)) be a undirected simple graph, where V(G) and E(G) are the vertex
and the edge sets of G, respectively. By the order and size of G, we mean the number of its
vertices and edges. The degree du of a vertex u ∈ V(G) is the number of edges that have u as
an endpoint. The open neighborhood of u is the set N(u) = {v ∈ V(G) : uv ∈ E(G)}. We denote
by K2 the connected graph of order 2. Also, denote by Hm,n the graph consisting of m copies
of K2 and n − 2m isolated vertices.

According to Gutman [3], the Sombor index of G is defined as SO(G) = ∑uv∈E(G)

√
d2

u + d2
v.

Some results for the mentioned index can be found in [1, 4–6, 8, 9] and the references therein.
The Sombor matrix ASO(G) = (sij) of the graph G is defined by [2] sij =

√
d2

vi
+ d2

vj
if vi and
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vj are adjacent and 0 otherwise. We denote its eigenvalues by σ1 ≥ σ2 ≥ · · · ≥ σn. Note that
σ1(K2) = σ1(Hm,n) =

√
2. In [7] the authors proved and proposed the following theorem and

conjecture, respectively.

Theorem 1.1. [7, Theorem 5] Let G be a graph of size m > 0 and order n. Then m σ1 ≥ SO(G).
Also, If G is connected, then equality holds if and only if G ∼= K2. In the general case, equality holds
if and only if G ∼= Hm,n, when SO(G) =

√
2m.

Conjecture 1.2. Let G be a graph of size m and order n. Then

m |σn| = −m σn ≥ SO(G) . (1)

Moreover, if G is connected, then equality in (1) holds if and only if G is the complete graph. Then
σn =−

√
2(n − 1) and SO(G) =

√
2(n − 1) n(n−1)

2 . In the general case, equality holds if and only if
G consists of mutually isomorphic complete graphs and some (or no) isolated vertices.

2 Proof of the conjecture

In this paper, we prove the conjecture.

Proof. Let V(G) = {v1, . . . ,vn}. First note that if m = 0, then SO(G) = 0 and hence the relation
(1) holds. So, suppose that m ≥ 1 and let e = vivj be an arbitrary edge in E(G). With out loss
of generality suppose i < j. Consider

Xi,j = (0, . . . ,0,−1,0, . . . ,0,1,0 . . . ,0)T

as a n-tuple with entries in {−1,0,1} such that the ith and the jth entries of it are equal to −1
and 1, respectively. By the Rayleigh–Ritz variational principle, we obtain:

σn ≤
XT

i,j ASO(G)Xi,j

XT
i,j Xi,j

.

It conclude that σn ≤ −
sij + sji

2
and consequently

√
d2

i + d2
j ≤ −σn. This implies that

∑e=vivj∈E(G)

√
d2

i + d2
j ≤ −mσn

and so SO(G)≤−mσn. Moreover, equality in (1) will hold if and only if Xi,j is the eigenvector
of ASO(G) corresponding to the eigenvalue σn, for all i, j with vivj ∈ E(G). It concludes that

N(vi) \ {vj} = N(vj) \ {vi} (2)

Let G′ be the connected component of G such that e = vivj ∈ E(G′). We claim that G′ is a
complete subgraph of G. To the contrary, suppose G′′ ̸= G′ is a maximal clique of G′ and
x ∈ V(G′) \ V(G′′). Since G′ is connected, there exists a vertex y ∈ V(G′′) such that x ∈ N(y).
This implies that x ∈ N(z) for any z ∈ V(G′′), by (2), a contradiction. Until now, we prove
that each connected component of G is complete. Next, applying

√
d2

i + d2
j = −σn implies

that every connected component of G has the same order and the proof is complete.
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3 Conclusions

For an arbitrary simple undirected graph G of size m, we proved that SO(G) ≤ −m σn,
where σn is the smallest eigenvalue of the Sombor matrix ASO(G). Moreover it is shown that
equality holds if and only if G consists of mutually isomorphic complete graphs and some
(or no) isolated vertices.
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