| تعداد نشریات | 11 |
| تعداد شمارهها | 228 |
| تعداد مقالات | 2,317 |
| تعداد مشاهده مقاله | 3,623,806 |
| تعداد دریافت فایل اصل مقاله | 2,663,794 |
Bounds for Sombor index using topological and statistical indices | ||
| Journal of Discrete Mathematics and Its Applications | ||
| مقاله 5، دوره 10، شماره 1، خرداد 2025، صفحه 61-85 اصل مقاله (411.86 K) | ||
| نوع مقاله: Full Length Article | ||
| شناسه دیجیتال (DOI): 10.22061/jdma.2025.11494.1107 | ||
| نویسندگان | ||
| Hasan Barzegar* ؛ Maryam Mohammadi | ||
| Department of Mathematics, Tafresh University, Tafresh 39518-79611, I. R. Iran | ||
| تاریخ دریافت: 06 آذر 1403، تاریخ بازنگری: 23 دی 1403، تاریخ پذیرش: 26 دی 1403 | ||
| چکیده | ||
| In this study, we find some bounds for the Sombor index of a graph $G$ by some topological and statistical indices such as arithmetic index}, geometric index, it arithmetic-geometric (AG) index, geometric-arithmetic (GA) index, symmetric division degree index (SDD(G)), and some central and dispersion indices. The bounds can state estimated values and error intervals for the Somber index and show limits of accuracy. Error intervals are expressed as inequalities. | ||
| کلیدواژهها | ||
| Sombor index؛ topological indices؛ statistical indices؛ geometric-arithmetic index؛ arithmetic-geometric index | ||
| مراجع | ||
|
[1] R. Aguilar-S´anchez, J. A. M´endez-Berm´udez, J. M. Rodr´ ıguez, and Jos´e M. Sigarreta, Normalized Sombor indices as complexity measures of random networks, Entropy 23(8) (2021) 976–989. https://doi.org/10.3390/e23080976
[2] J. M. Aldaz, Comparison of differences between arithmetic and geometric means, Tamkang J. Math. 42 (2011) 453–462. https://doi.org/10.5556/j.tkjm.42.2011.453-462
[3] J. M. Aldaz, Self-Improvement of the inequality between arithmetic and geometric means, J. Math. Inequalities, 3(2) (2009) 213–216. https://doi.org/10.7153/jmi-03-21
[4] H. Barzegar, Lower and upper bounds between energy, Laplacian energy, and Sombor index of some graphs, Iranian J. Math. Chem. 16(1) (2025) 33–38. https://doi.org/10.22052/ijmc.2024.254674.1850
[5] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004. https://doi.org/10.1017/cbo9780511804441
[6] S. Cui, W. Wang, G. Tian, B. Wu, On the arithmetic-geometric index of graphs, MATCH Commun. Math. Comput. Chem. 85 (2021) 87–107.https://doi.org/10.48550/arXiv.2010.03748
[7] K. C Das, A. S C¸evik, I. N. Cangul and Y. Shang, On Sombor index, Symmetry 13 (2021) 140–148. https://doi.org/10.3390/sym13010140
[8] K. C. Das, I. Gutman, B. Furtula, On third geometric-arithmetic index of graphs, Iranian J. Math. Chem. 1(2) (2010) 29–36. https://doi.org/10.22052/ijmc.2010.5152
[9] D. Chakrabarty, AHM as a measure of central tendency of sex ratio, Biometrics and Biostatistics Int. J. 10(2) (2021) 50–57. https://doi.org/10.15406/bbij.2021.10.00330
[10] B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem. 53(4) (2015) 1184–1190. https://doi.org/10.1007/s10910-015-0480-z
[11] N. Ghanbari, S. Alikhani, Sombor index of certain graphs, Iranian J. Math. Chem. 12(1) (2021) 27–37. https://doi.org/10.22052/ijmc.2021.242106.1547
[12] Ronald E. Glaser, The ratio of the geometric mean to the arithmetic mean for a random sample from a gamma distribution, J. American Statis. Asso. 71(354) (2012) 480–487. https://doi.org/10.2307/2285338
[13] R. V. Hogg, E.A. Tanis, D.L. Zimmerman, Probability and Statistical Inference, 9th ed., Pearson Education, 2014. https://api.pageplace.de/preview/D9781292062563 A24270068.pdf
[14] H. ˙ Ibrahim C¸elik, Applications of weighted arithmetic geometric means inequality to functional inequalities, J. Engi. Tech. Appl. Sci. 2(1)(2017) 27–31. https://doi.org/10.30931/jetas.303624
[15] S. Janson, T. Luczak, and A. Ruci´nski, Random Graphs, John Wiley & Sons, New York, 2000. https://doi.org/10.1002/9781118032718
[16] I. Miller, M. Miller, John E. Freund’s Mathematical Statistics with Applications, 8th ed., Pearson, 2013.
[17] V. R. Kulli, J. A. M´endez-Berm´udez, Jos´e M. Rodr´ ıguez, and Jos´e M. Sigarreta, Revan Sombor indices: Analytical and statistical study, Math. Biosciences and Engi. 20(2) (2023) 1801–1819. https://doi.org/10.3934/mbe.2023082
[18] H.Liu, I.Gutman,L.You,Y.Huang.Somborindex: reviewofextremalresultsandbounds,Journal of Mathematical Chemistry 60 (2022) 771–798. https://doi.org/10.1007/s10910-022-01333-y
[19] J. Lagarias, Euler’s constant: Euler’s work and modern developments, Bull. (new series) of the american math. society 50(4) (2013) 527–628. https://doi.org/10.1090/S0273-0979-2013-01423-X
[20] I. Milovanovi´c, E. Milovanovi´c, M. Mateji´c, On some mathematical properties of sombor indices, Bulletin of the Int. Math. Virtual Institute 11(2) (2021) 341–353. https://doi.org/10.7251/BIMVI2102341M
[21] M. Mohammadi, H. Barzegar, Ali Reza Ashrafi, Comparisons of the Sombor index of alkane, alkyl, and annulene series with their molecular mass, Journal of Chemistry 2022 (2022) 17.https://doi.org/10.1155/2022/8348525
[22] M. D. Penrose, Random Geometric Graphs, Oxford University Press, 2003. https://doi.org/10.1093/acprof:oso/9780198506263.001.0001
[23] B.Rodin, Variance and the inequality of arithmetic and geometric means, Rocky Mountain J.Math. 47(2) (2017) 637–648. https://doi.org/10.1216/RMJ-2017-47-2-637
[24] S. Ross, A First Course in Probability, 10th ed., Pearson, Boston, MA, 2019. https://www.pearsonhighered.com/assets/preface/0/1/3/4/0134753119.pdf
[25] S. Rouhani, M. Habibi, M. A. Mehrpouya, On Sombor index of extremal graphs, J. Disc. Math. Appl. 9(4) (2024) 335–344. https://doi.org/ 10.22061/jdma.2024.11328.1101
[26] S. Vujoˇsevi´c, G. Popivoda, ˇ Z. K. Vuki´cevi´c, B. Furtula, R. ˇ Skrekovski, Arithmetic-geometric index and its relations with geometric-arithmetic index, Appl. Math. Comp. 391 (2021) 125–706. https://doi.org/10.1016/j.amc.2020.125706
[27] A.Vasilyev, Upper and lower bounds of symmetric division deg index, Iranian J. Math. Chem. 5(2) (2014) 91–98. https://doi.org/10.22052/ijmc.2014.7357
[28] D. Wackerly, W. Mendenhall, R. L. Scheaffer, Mathematical Statistics with Applications, 7th ed., Brooks/Cole, Belmont, CA, 2008. https://statistics.rutgers.edu/images/582 Sackrowitz.pdf
[29] Z. Wang, Y, Mao, Y. Li, B, Furtula, On relations between Sombor and other degree-based indices, J. Applied Math. and Compu. 68 (2022) 1–17. https://doi.org/10.1007/s12190-021-01516-x
[30] Y. Yuan, B. Zhou, N.Trinajsti´c, On geometric-arithmetic index, Journal of Mathematical Chemistry 47 (2010) 833–841. https://doi.org/10.1007/s10910-009-9603-8 | ||
|
آمار تعداد مشاهده مقاله: 412 تعداد دریافت فایل اصل مقاله: 447 |
||