| تعداد نشریات | 11 |
| تعداد شمارهها | 227 |
| تعداد مقالات | 2,309 |
| تعداد مشاهده مقاله | 3,599,938 |
| تعداد دریافت فایل اصل مقاله | 2,643,105 |
Definition and investigation of moduloid over an ordinal nexus: A review of some fuzzy concepts | ||
| Journal of Discrete Mathematics and Its Applications | ||
| مقاله 3، دوره 10، شماره 1، خرداد 2025، صفحه 21-42 اصل مقاله (370.8 K) | ||
| نوع مقاله: Full Length Article | ||
| شناسه دیجیتال (DOI): 10.22061/jdma.2024.11243.1096 | ||
| نویسندگان | ||
| Esmaeil Nahidi* ؛ Hojat Babaei؛ Abbas Hasankhani | ||
| Department of Mathematics, Kerman Branch, Islamic Azad University, Kerman, I. R. Iran | ||
| تاریخ دریافت: 13 شهریور 1403، تاریخ بازنگری: 04 دی 1403، تاریخ پذیرش: 04 دی 1403 | ||
| چکیده | ||
| While ordinal numbers facilitate the comparison between two infinite addresses, no studies have so far defined and investigated the use of algebraic space structures over an ordinal nexus. Here, the notions of moduloid over ordinal nexus and homomorphism between two Γ-moduloids are defined and some relations between moduloid and ordinal nexus are investigated. Moreover, some of these concepts are fuzzified. By defining the fuzzy subnexuses over a nexus N, it is shown that if S (i.e., a nonempty subset of N) is a meet closed subset then N is finite. Accordingly, the present study provides insights into the notions of N∞, moduloid and its subsets, moduloid over cyclic nexuses and its subsets, along with supremum of two addresses over ordinal nexuses. | ||
| کلیدواژهها | ||
| Γ-moduloid ordinal nexus؛ γ-moduloid homomorphism؛ fuzzy moduloid | ||
| مراجع | ||
|
[1] D. Afkhami Taba, A. Hasankhani, M. Bolourian, Soft nexuses, Computers and Mathematics with Applications 64 (2012) 1812–1821. https://doi.org/10.1016/j.camwa.2012.02.048
[2] D. Afkhami, N. Ahmadkhah, A. Hasankhani, A fraction of nexuses, International Journal of Algebra 5(18) (2011) 883–896. https://www.m-hikari.com/ija/ija-2011/ija-17-20-2011/afkhamiIJA1720-2011.pdf
[3] N. K. Al-daban, semi-essential submodules and semi- uniform module, M.Sc. Thesis, University of Tikrit,(2005). https://doi.org/10.32894/kujss.2009.40796
[4] M. Bolourian, Theory of plenices, PhD. Thesis (supervised by H Nooshin), University of Surrey,England (2009).
[5] M. Bolourian, A. Hasankhani, Moduloid over nexus, perprint.
[6] M. Bolourian, H. Nooshin, Element of theory of plenices, International Journal of Space Structures 19(4) (2004) 203–244. https://doi.org/10.1260/0266351043492690
[7] K. Devlin, The JoyofSets: Fundamentals of ContemporarySet, Springer-Verlag, New York, (1993).
[8] A. A. Estaji, A. A. Estaji, Nexus over an ordinal, Journal of Uncertain Systems 9(3) (2015) 183–197. https://www.researchgate.net0bdd6c95816/Nexus-over-an-ordinal.pdf
[9] A. A. Estaji, T. Haghdadi, J. Farokhi, Fuzzy nexus over an ordinal. Journal of Algebraic Systems 3(1) (2015) 65–82. https://doi.org/10.22044/jas.2015.489
[10] M. Haristchain. Formex and plenix structural analysis, PhD Thesis (supervised by H Nooshin), University of Surrey, England (1980). https://openresearch.surrey.ac.uk/esploro/outputsCorpusID:125839080
[11] I. N. A. Hee, Plenix Structural Analysis, PhD Thesis (supervised by H Nooshin), University of Surrey, (1985). https://openresearch.surrey.ac.uk/Plenix-structural-analysis/99516443402346
[12] H.Hedayati, A.Asadi, Normal,maximalandproductfuzzysubnexusesofnexuses,J.Intell.Fuzzy Syst. 26(3)(2014) 1341–1348. https://doi.org/10.3233/IFS-130820
[13] H. Nooshin, Algebraic Representation and Processing of Structural Configurations, Int. J. of Computers and Structures, June (1975) 119–130. https://doi.org/10.1016/0045-7949(75)90002-4
[14] H. Nooshin, Formex Configuration Processing in Structural Engineering, (Elsevier Applied Science Publishers, London, 1984). https://api.semanticscholar.org/CorpusID:106734390
[15] H. Nooshin, P. Disney, Formex configuration processin I, International Journal of Space Structures 15(1) (2000) 1–52. https://doi.org/10.1260/0266351001494955
[16] H. Nooshin, P. Disney, Formex configuration processing II, Int. j. of space structures 16(1) (2001) 1–56. https://doi.org/10.1260/0266351011495313
[17] H. Nooshin, P. Disney, Formex Configuration Processing III, Int. J. of Space Structures 17(1) (2002) 1–50. https://doi.org/10.1260/026635102760123042
[18] H. Nooshin, P. Disney, C. Yamamoto, Formian, (Multi-Science Publishing Company, 1993).
[19] A. Saeidi Rashkolia, A. Hasankhani, Fuzzy subnexuses, Italian Journal of Pure and Applied Mathematics (28)(2011) 229–242 https://ijpam.uniud.it/online issue/201128/22-saedi-hasankhani.pdf
[20] A. Saeidi Rashkolia, Prime fuzzy subnexuses, Proceeding of 20th Seminar on Algebra, Tarbiat Moallem University, Iran, April 22-23 (2009) 190–193.
[21] L. Torkzadeh, A.Hasankhani, SomeresultsonprimeandmaximalsubnexusesofanexusProceeding of 20th Seminar on Algebra, Tarbiat Moallem University, Iran, April 22-23 (2009) 222–224.
[22] M. M. Zahedi, Some Results on L-Fuzzy Modules, Fuzzy Sets and Systems, Vol. 55, PP. 355-363, (1993). https://doi.org/10.1016/0165-0114(93)90264-i | ||
|
آمار تعداد مشاهده مقاله: 219 تعداد دریافت فایل اصل مقاله: 240 |
||