Journal of Computational & Applied Research in Mechanical Engineering (JCARME)
مقالات آماده انتشار ، پذیرفته شده، انتشار آنلاین از تاریخ 28 بهمن 1403 اصل مقاله (1.23 M )
نوع مقاله: Review paper
شناسه دیجیتال (DOI): 10.22061/jcarme.2025.10035.2349
نویسندگان
Azadeh Shahidian* ؛ Sanam Tahouneh
Department of mechanical engineering, K. N. Toosi university of technology, 19919-43344, Tehran, Iran
تاریخ دریافت : 09 مرداد 1402 ،
تاریخ بازنگری : 22 بهمن 1403 ،
تاریخ پذیرش : 28 بهمن 1403
چکیده
In recent years, microfluidic devices have had various applications, such as the biological field. Hence, it is essential to study fluid flow governing equations in order to realization and ability to better control fluids in different flow regimes according to microfluidic devices. Also, study of inducing source, fabrication technique, and numerical procedure of fluid flow simulation are necessary for flow solution and are used to select proper devices. Here, the mentioned cases have been studied. As well, numerical methods of fluid flow study for various type of fluid, their comparison and pros and cons of each of them have been briefly expressed that may be used for the development of them. Then, the extensive biological application of micromixers and micropumps have been investigated. It is expected that this paper will be of attention to scholars or practitioners in the micromixer and micropump biomedical technology field and those who enter this context for the first time and may also highlight what will assist in future development.
کلیدواژهها
Micromixer ؛ Micropump ؛ Fabrication method ؛ Numerical procedure ؛ Biological application
مراجع
[16] T.T. Nguyen, N.S. Goo, V.K. Nguyen, Y. Yoo, S.Z Park, "Design, fabrication, and experimental characterization of a flap valve IPMC micropump with a flexibly supported diaphragm", Sens. Actuators A , Vol. 141, No. 2, pp. 640–648, (2008).
[17] L. Jiang, Y. Zeng, Q. Sun, Y. Sun, Z. Guo, J.Y. Qu, S. Yao, "Microsecond protein folding events revealed by time-resolved fluorescence resonance energy transfer in a microfluidic mixer", Anal. Chem ., Vol. 87, No. 11, pp. 5589–5595, (2015).
[18] Y. Gambin, V. VanDelinder, A.C.M. Ferreon, E.A. Lemke, A. Groisman, A.A. Deniz, "Visualizing a one-way protein encounter complex by ultrafast single-molecule mixing", Nat. Methods, Vol. 8, No. 3, pp. 239-241, (2011).
[20] A. Plumridge, A.M. Katz, G.D. Calvey, L. Pollack, R. Elber, S. Kirmizialtin, "Revealing the distinct folding phases of an RNA three-helix junction", Nucleic Acids Res ., Vol. 46, No. 14, pp. 7354–7365, (2018).
[24] S. Kim, A.M. Streets, R.R. Lin, S.R. Quake, S. Weiss, D.S. Majumdar, "Highthroughput single-molecule optofluidic analysis", Nat. Methods , Vol. 8, No. 3, pp. 242–245, (2011).
[28] D.E. Hertzog, X. Michalet, M. Jager, X.X. Kong, J.G. Santiago, S. Weiss, O. Bakajin, "Femtomole mixer for microsecond kinetic studies of protein folding", Anal. Chem ., Vol. 76, No. 24, pp. 7169–7178, (2004).
[38] A. Cosentino, H. Madadi, P. Vergara, R.Vecchione, F. Causa, and P. A. Netti, “An efficient planar accordion-shaped micromixer: From biochemical mixing to biological application,” Sci. Rep ., Vol. 5, No. November, pp. 1-10, (2015).
[42] K. Ellinas, V. Pliaka, G. Kanakaris, A. Tserepi, L.G. Alexopoulos, E. Gogolides, "Micro-bead immunoassays for the detection of IL6 and PDGF-2 proteins on a microfluidicplatform, incorporating superhydrophobic passive valves", Microelectron. Eng .,Vol. 175, pp. 73-80, (2017).
[53] R. Hu, C. Liu, J. Xuan, Y. Xu, T. Li, B.-F. Liu, Y. Li, Y. Yang, "3D hydrodynamic flow focusing-based micromixer enables high-resolution imaging for studying the early folding kinetics of G-quadruplex", Sens. Actuatos. B Chem ., Vol. 293, pp. 312–320, (2019).
[73] L. Zhao, F. Liu, Y. Peng, W. An, C. Sha, Z. Wang, J. Liu, H. Ye, "Researchdevelopment and key scientific and technical problems on EMHD marine oil film recovery technology", Aquat. Procedia, Vol. 3, pp. 21-28, (2015).
[77] H. Kim, A. Astle, K. Najafi, L.P. Bernal, P. D. Washabaugh, "Anintegrated electrostatic peristaltic 18-stage gas micropump with active microvalves", J. Microelectromech. Syst., Vol. 24, No. 1, pp. 192-206, (2015).
[79] I. Lee, P. Hong, C. Cho, B. Lee, K. Chun, B. Kim, "Four-electrode micropump with peristaltic motion", Sens. Actuators A: Phys ., Vol. 245, pp. 19-25, (2016).
[82] N.A. Hamid, B.Y. Majlis, J. Yunas, A.R. Syafeeza, Y.C. Wong, M. Ibrahim, "A stack bonded thermo-pneumatic micro-pump utilizing polyimide based actuator membrane for biomedical applications", Microsyst. Technol ., Vol. 23, pp. 4037-4043, (2017).
[83] N.A. Hamid, B.Y. Majlis, J. Yunas, A.A. Hamzah, M.M. Noor, "Fabrication of thermo-pneumatic driven microactuator for fluid transport applications", Adv. Sci. Lett. , Vol. 19, No. 10, pp. 2854-2859 ,(2013).
[84] K. Abi-Samra, L. Clime, L. Kong, R. Gorkin III, T.H. Kim, Y.K. Cho, M. Madou, "Thermo-pneumatic pumping in centrifugal microfluidic platforms", Microfluid. Nanofluid ., Vol. 11, pp. 643-652, (2011).
[94] S. Spieth, A. Schumacher, T. Holtzman, P. D. Rich, D. E. Theobald, J. W. Dalley, R. Nouna, S. Messner, R. Zengerle, "An intra-cerebral drug delivery system for freely moving animals", Biomed. Microdevices , Vol. 14, pp. 799-809, (2012).
[96] S.M. Bonk, M. Stubbe, S.M. Buehler, C. Tautorat, W. Baumann , E.D. Klinkenberg, J. Gimsa, "Design and characterization of a sensorized microfluidic cell-culture system with electro-thermal micro-pumps and sensors for cell adhesion, oxygen, and pH on a glass chip", Biosensors , Vol. 5, pp. 513-536, (2015).
[97] S.A.M. Shaegh, Z. Wang, S.H. Ng, R. Wu, H.T. Nguyen, L.C.Z. Chan, A.G.G. Toh, Z. Wang, "Plug-and-play microvalve and micropump for rapid integration with microfluidic chips", Microfluid. Nanofluid ., Vol. 19, pp. 557-564, (2015).
[98] T. Sato, Y. Yamanishi, V. Cacucciolo, Y. Kuwajima, H. Shigemune, M. Cianchetti, C. Laschi, S. Maeda, "Electrohydrodynamic conduction pump with asymmetrical electrode structures in the microchannels", Chem. Lett ., Vol. 46, No. 7, pp. 950-952, (2017).
[100] D.H. Yoon, H. Sato, A. Nakahara, T. Sekiguchi, S. Konishi, S. Shoji, "Development of an electrohydrodynamic ion-drag micropump using three-dimensional carbon micromesh electrodes", J. Micromech. Microeng ., Vol. 24, No. 9, 095003, (2014).
[107] Y. Li, Y. Ren, W. Liu, X. Chen, Y. Tao, H. Jiang, "On controlling the flow behavior driven by induction electrohydrodynamics in microfluidic channels", Electrophoresis , Vol. 38, No. 7, pp. 983-995, (2017).
[113] S.C. Lin, J.C. Lu, Y.L.Sung, C.T. Lin, Y.C. Tung, "A low sample volume particle separation device with electrokinetic pumping based on circular travellingwave electroosmosis", Lab Chip, Vol. 13, No. 15, pp. 3082-3089, (2013).
[115] X. Fu, N. Mavrogiannis, S. Doria, Z. Gagnon, "Microfluidic pumping, routing and metering by contactless metal-based electro-osmosis", Lab Chip, Vol.15, No. 17, pp. 3600-3608, (2015).
[124] W. Liu, J. Shao, Y. Ren, Y. Wu, C. Wang, H. Ding, H. Jiang, Y. Ding, "Effects of discrete-electrode arrangement on traveling-wave electroosmotic pumping", J. Micromech. Microeng ., Vol. 26, No. 9, (2016).
[125] R. Niu, P. Kreissl, A.T. Brown, G. Rempfer, D. Botin, C. Holm, T. Palberg, J. de Graaf, "Microfluidic pumping by micromolar salt concentrations", Soft Matter ., Vol. 13, No. 7, pp. 1505-1518, (2017).
[127] M.V. Piñón, B.C. Benítez, B. Pramanick,V.H. Perez-Gonzalez, M.J. Madou, S.O. Martinez-Chapa, H. Hwang, "Direct current-induced breakdown to enhance reproducibility andperformance of carbon-based interdigitated electrode arrays for AC electroosmotic micropumps", Sens. Actuators A: Phys ., Vol. 262, pp. 10-17, (2017).
[129] X. Li, S. Liu, P. Fan, C.F.k Werner, K. Miyamoto,T. Yoshinobu, "A bubble-assisted electroosmotic micropump for a delivery of adroplet in a microfluidic channel combined with a light-address able potentiometric sensor", Sens. Actuators B: Chem. , Vol. 248, pp. 993-997, (2017).
[141] D.A. Boy, F. Gibou, S. Pennathur, "Simulation tools for lab on a chip research: advantages, challenges, and thoughts for the future", Lab Chip , Vol. 8, No. 9, pp. 1424-1431, (2008).
[150] B.D. Gates, Q. Xu, M. Stewart, D. Ryan, C.G. Willson, G.M. Whitesides, "New approachesto nanofabrication: molding, printing, and other techniques". Chem. Rev ., Vol. 105, No. 4, pp. 1171-1196, (2005).
[153] B. Hannes, J. Vieillard, E.B. Chakra, R. Mazurczyk, C.D. Mansfield, J. Potempa, S. Krawczyk, "The etching of glass patterned by microcontact printing with application to microfluidics and electrophoresis", Sens. Actuators B , Vol. 129, No. 1, pp. 255–262,( 2008).
[157] J. Cai, J. Jiang, F. Gao, G. Jia, J Zhuang, G. Tang, Y. Fan, " Rapid prototyping of cyclic olefin copolymer based microfluidic system with CO2 laser ablation", Microsyst. Technol , Vol. 23, No. 10: pp. 5063–5069, (2017).
[159] K. Iwai, K.C. Shih, X. Lin, T.A. Brubaker, R.D. Sochol, L.W. Lin, " A self-sufficient pressure pump using latex balloons for microfluidic applications", Lab Chip , Vol. 14, No. 19, pp. 3790–379, (2014).
[163] S. Dekker, W. Buesink, M. Blom, M. Alessio, N. Verplanck, M. Hihoud, C. Dehan, W. Cesar, A.L. Nel, A. van den Berg, "Standardized and modular microfluidic platform for fast Lab on Chip system development", Sens. Actuators B: Chem. , Vol. 272, pp.468-478 ,(2018).
[168] S. Waheed, J.M. Cabot, N.P. Macdonald, T. Lewis, R.M. Guijt, B. Paull, M.C. Breadmore, "3D printed microfluidic devices: Enablers and barriers". Lab Chip , Vol. 16, No. 11, pp. 1993–2013. (2016).
[179] B. Pe čar, M. Mo ž ek, D. Resnik, T. Dol ž an, D. Vrta čnik, D. Kri ž aj. "Piezoelectric peristaltic micropump with a single actuator", J. Micromech. Microeng ., Vol. 24, No. 10, 105010, (2014) .
[191] T.T. Nguyen, N.S. Goob, V.K. Nguyenc, Y. Yood, S. Park, "Design, fabrication, and exper- imental characterization of a flap valve IPMC micropump with a flexibly supported diaphragm". Sens. Actuators A Phys., Vol. 141, No. 2, pp. 640–648, (2008) .
[205] S.J. Wang, W. Saadi, F. Lin, C.M.C. Nguyen, N.L. Jeon, "Differential effects of EGF gradient profiles on MDA-MB-231 breast cancer cell chemotaxis", Exp. Cell Res. , Vol. 300, No. 1, pp. 180–189, (2004).
[206] V.V. Abhyankar, M.W. Toepke, C.L. Cortesio, M.A. Lokuta, A. Hutenlocher, D.J. Beebe, "A platform for assessing chemotactic migration within a spatiotemporally defined 3D microenvironment", Lab Chip , Vol. 8, No. 9, pp. 1507–1515, (2008).
[208] F. Lin, C.M.C. Nguyen, S.J. Wang, W. Saadi, S.P. Gross, N.L. Jeon, "Effective neutrophil chemotaxis is strongly influenced by mean IL-8 concentration", Biochem. Biophys. Res. Commun ., Vol. 319, No. 2, pp. 576–581, (2004).
[209] S.K.W. Dertinger, X.Y. Jiang, Z.Y. Li, V.N. Murthy, G.M. Whitesides, "Gradients of substrate-bound laminin orient axonal specification of neurons", Proc. Natl. Acad. Sci. USA .,Vol. 99, No. 20, pp. 12542–12547, (2002).
[210] B.G. Chung, L.A. Flanagan, S.W. Rhee, P.H. Schwartz, A.P. Lee, E.S. Monuki, N.L. Jeon, "Human neural stem cell growth and differentiation in a gradient-generating microfluidic device", Lab Chip , Vol. 5, No. 4, pp. 401– 406, (2005).
[211] O.C. Amadi, M.L. Steinhauser, Y. Nishi, S. Chung, R.D. Kamm, A.P. McMahon, R.T. Lee, "A low resistance microfluidic system for the creation of stable concentration gradients in a defined 3D microenvironment", Biomed. Microdevices , Vol. 12, pp. 1027–1041, (2010).
[212] I. Barkefors, S. Le Jan, L. Jakobsson, E. Hejll, G. Carlson, H. Johansson, J. Jarvius, J.W. Park, N.L. Jeon, J. Kreuger, "Endothelial cell migration in stable gradients of vascular endothelial growth factor a and fibroblast growth factor 2-Effects on chemotaxis and chemokinesis", J. Biol. Chem ., Vol. 283, No. 20, pp. 13905–13912, (2008).
[213] A. Shamloo, N. Ma, M.M. Poo, L.L. Sohn, S.C. Heilshorn, "Endothelial cell polarization and chemotaxis in a microfluidic device", Lab Chip , Vol. 8, No. 8, pp. 1292–1299, (2008).
[218] A. Murakami, M. Nakaura, Y. Nakatsuji, S. Nagahara, Q. Tran-Cong, K. Makino, "Fluorescent-labeled oligonucleotide probes: detection of hybrid formation in solution by fluorescence polarization spectroscopy", Nucleic Acids Res ., Vol. 19, No. 15, pp. 4097–4102, (1991).
[221] Y. Li, F. Xu, C. Liu, Y.Z. Xu, X.J. Feng, B.F. Liu," A novel microfluidic mixer based on dual-hydrodynamic focusing for interrogating the kinetics of DNA-protein interaction", Analyst , Vol. 138, No. 16, pp. 4475–4482, (2013).
[224] R.H. Liu, R. Lenigk, R.L. Druyor-Sanchez, J.N. Yang, P. Grodzinski, "Hybridization enhancement using cavitation microstreaming", Anal. Chem ., Vol. 75, No. 8, pp. 1911–1917, (2003).
[226] M. Bezagu, S. Arseniyadis, J. Cossy, O. Couture, M. Tanter, F. Monti, P.Tabeling, "A fast and switchable microfluidic mixer based onultrasound-induced vaporization of perfluorocarbon", Lab Chip , Vol. 15, No.9, pp. 2025–2029, (2015).
[227] A. Bohr, J. Boetker, Y. Wang, H. Jensen, J. Rantanen, M. Beck-Broichsitter, "High-throughput fabrication of nanocomplexes using 3D-printedmicromixers", J. Pharm. Sci ., Vol. 106, No. 3, pp. 835–842, (2017).
[229] F.T.G. van den Brink, T. Wigger, L. Ma, M. Odijk, W. Olthuis, U. Karstb, A. vanden Berg, "Oxidation and adduct formation of xenobiotics in a microfluidicelectrochemical cell with boron doped diamond electrodes and anintegrated passive gradient rotation mixer", Lab Chip, Vol. 16, No. 20, pp. 3990–4001, (2016).
[236] N.A. Hamid, Y.M. Burhanuddin, Y. Jumril, A.R. Syafeeza, Y.C. Wong, M. Ibrahim, "A stack bonded thermo-pneumatic micro-pump utilizing polyimide based actuator mem- brane for biomedical applications". Micros. Tech. , Vol. 23, No. 9, pp. 4037–43,( 2017).
[237] W.H. Chang, S.Y. Yang, C.H. Wang, M.A. Tsai, P.C. Wang, T.Y. Chen, S.C. Chen, G.B. Lee, "Rapid isolation and detection of aquaculture pathogens in an integrated microfluidic system using loop-mediated isothermal amplification", Sens. Actuators B: Chem. , Vol. 180, pp. 96-106, (2013).
[239] W.H. Chang, C.H. Wang, C.L. Lin, J.J. Wu, M.S. Lee, G.B. Lee, "Rapid detection and typing of live bacteria from human joint fluid samples by utilizing an integrated microfluidic system", Biosens. Bioelectron. , Vol. 66, pp.148-154, (2015).
[240] C.Y. Chao, C.H. Wang, Y.J. Che, C.Y. Kao, J.J. Wu, G.B. Lee, "An integrated microfluidic system for diagnosis of there sistance of Helicobacter pylori to quinolone-based antibiotics", Biosens. Bioelectron ., Vol. 78, pp. 281-289, (2016).
[242] W.B. Lee, C.Y. Fu, W.H. Chang, H.L. You, C.H.Wang, M.S. Lee, G.B. Lee, "A microfluidic device for antimicrobial susceptibility testing based on a broth dilution method", Biosens. Bioelectron., Vol. 87, pp. 669-678, (2017).
[243] S.L. Chen, W.H. Chang, C.H. Wang, H.L. You, J.J. Wu, T.H. Liu, M. S. Lee, G.B. Lee, "An integrated microfluidic system for live bacteria detection from human joint fluid samples by using ethidium monoazide and loop-mediated isothermal amplification", Microfluid. Nanofluid ., Vol. 21 (2017).
[245] I.A. Eydelnant, U. Uddayasankar, B.Y. Li, M.W.Liao, A.R.Wheeler, "Virtual microwells for digital microfluidic reagent dispensing and cell culture", Lab Chip , Vol. 12, No. 4, pp. 750-757, (2012).
[248] D.G. Rackus, R.P.S. de Campos, C. Chan, M.M. Karcz, B. Seale, T. Narahari, C. Dixon, M.D. Chamberlain, A.R. Wheeler, "Pre-concentration by liquid intake by paper (PCLIP): a new technique for large volumes and digital microfluidics", Lab Chip , Vol. 17, No. 13, pp. 2272-2280, (2017).
[250] T. Zhou, J. Yang, D. Zhu, J. Zheng, S. Handschuh-Wang, X. Zhou, J. Zhang, Y. Liu, Z. Liu, C. He, X. Zhou, "Hydrophilic sponges for leaf-inspired continuous pumping of liquids", Adv. Sci ., Vol. 4 , No. 6, 1700028, (2017).
[251] Z. Ma, Y. Zheng, Y. Cheng, S. Xie, X. Ye, M. Yao, "Development of an integrated microfluidic electrostatic sampler for bioaerosol", J. Aerosol Sci., Vol. 95, pp. 84-94, (2016).
[253] S.A.M. Shaegh, A. Pourmand, M. Nabavinia, H. Avci, A. Tamayol, P. Mostafalu, H.B. Ghavifekr, E.N. Aghdam, M.R. Dokmeci, A. Khademhosseini, Y.S. Zhang, "Rapid prototyping of whole-thermoplastic microfluidics with built-inmicrovalves using laser ablation and thermal fusion bonding", Sens. Actuators B: Chem ., Vol. 255 , pp. 100-109 ,(2018).
[254] M.J. Jebrail, A. Sinha, S. Vellucci, R.F. Renzi, C. Ambriz, C. Gondhalekar, J.S. Schoeniger, K.D. Patel, S.S. Branda, "World-to-digital-microfluidic interface enabling extraction and purification of RNA from human whole blood", Anal. Chem ., Vol. 86, No. 8, pp. 3856-3862, (2014).
[256] S. Zehnle, F. Schwemmer, G. Roth, F. von Stetten, R. Zengerleabc, N. Paust, "Centrifugo-dynamic inward pumping of liquids on a centrifugal microfluidic platform", Lab Chip , Vol. 12, No. 24, pp. 5142-5145, (2012).
[257] F. Schwemmer, S. Zehnle, D. Mark, F. von Stetten, R. Zengerle, N. Paust, "A Microfluidic timer for timed valving and pumping in centrifugal microfluidics". Lab Chip , Vol. 15, No. 6, pp. 1545-1553, (2015).
[258] Y. Song, M. Li, X. Pan, Q. Wang, D. Li, "Size-based cell sorting with a resistive pulse sensor and an electromagnetic pump in a microfluidic chip", Electrophoresis , Vol. 36, No. 3, pp. 398-404, (2015).
[260] F.G. Strobl, D. Breyer, P. Link, A.A. Torrano , C. Bräuchle, M.F. Schneider, A.Wixforth, "A surface acoustic wave-driven micropump for particle uptake investigation under physiological flow conditions in very small volumes", Beilstein J. Nanotechnol ., Vol. 6, pp. 414-419, (2015).
[261] M.K.D. Manshadi , D, Khojasteh, M. Mohammadi, R. Kamali, "Electroosmotic micropump for lab-on-a-chip biomedical applications", Int. J. Numer. Model ., Vol. 29, No. 5, pp. 845-858, (2016).
[262] K. Wang, R. Liang, H. Chen, S. Lu, S. Jia, W. Wang, "A microfluidic immunoassay system on a centrifugal platform", Sens. Actuators B: Chem ., Vol. 251, pp. 242-249, (2017).
[269] S. Sengupta, D. Patra, I. Ortiz-Rivera, A. Agrawal, S. Shklyaev, K. K. Dey, U. Cordova-Figueroa, T. E. Mallouk, A. Sen, "Self-powered enzyme micropumps", Nat. Chem ., Vol. 6, pp. 415-422, (2014).
[271] H. Zhang, W.T. Duan, M. Q. Lu, X. Zhao, S. Shklyaev, L. Liu, T.J. Huang, A. Sen, "Self-powered glucose-responsive micropumps", ACS. Nano ., Vol. 8, No. 8, pp. 8537-8542, (2014).
[272] L. Valdez, H. Shum, I. Ortiz-Rivera, A.C. Balazs, A. Sen, "Solutal and thermal buoyancy effects in self-powered phosphatase micropumps", Soft. Matter ., Vol. 13, No. 15, pp. 2800-2807, (2017).
[273] P. Song, S. Kuang, N. Panwar, G. Yang, D.J.H. Tng, S.C. Tjin, W.J. Ng, M.B.A. Majid, G. Zhu, K.T. Yong, Z.L. Wang, "A self-powered implantable drug-delivery system using biokinetic energy", Adv. Mater ., Vol. 29, No. 11, (2017).
[274] N. Okura, Y. Nakashoji, T. Koshirogane, M. Kondo, Y. Tanaka, K. Inoue, M. Hashimoto, "A compact and facile microfluidic droplet creation device using a piezoelectric diaphragm micropump for droplet digital PCR platforms", Electrophoresis , Vol.38, No. 20, pp. 2666-2672, (2017).
[276] Y. Murata, Y. Nakashoji, M. Kondo, Y. Tanaka, M. Hashimoto, "Rapid automatic creation of monodisperse emulsion droplets by microfluidic device with degassed PDMS slab as a detachable suction actuator", Electrophoresis , Vol. 39, No. 3, pp. 504-511, (2017).
[277] B. Zhao, X. Cui, W. Ren, F. Xu, M. Liu, Z.G. Ye, "A controllable and integrated pump-enabled microfluidic chip and its application in droplets generating", Sci. Rep ., Vol. 7, No. 11319, (2017).
[278] H. Mirzajani, C. Cheng, J. Wu, C.S. Ivanoff, E.N. Aghdam, H.B. Ghavifekr, "Design and characterization of a passive, disposable wirelessAC-electroosmotic lab-on-a-film for particle and fluid manipulation", Sens. Actuators B: Chem., Vol. 235, pp. 330-342, (2016).
[280] T. Akyazi, N. Gil-Gonzálezc, L. Basabe-Desmonts, E. Castaño, M.C. Morant-Miñana, F. Benito-Lopez, "Manipulation of fluid flow direction in microfluidic paper-based analytical devices with an ionogel negative passive pump", Sens. Actuators B: Chem ., Vol. 247, pp. 114-123, (2017).
[282] I. Uguz, C.M. Proctor, V.F. Curto, A.M. Pappa, M.J. Donahue, M. Ferro, R.M. Owens, D. Khodagholy, S. Inal, G.G. Malliaras, "A microfluidic ion pump for in vivo drug delivery", Adv. Mater. , Vol. 29, No. 27, (2017).
[287] K. Ullakko, L. Wendell, A. Smith, P. Müllner, G. Hampikian, "A magnetic shape mem-ory micropump: contact-free, and compatible with PCR and human DNA profiling", Smart Mater Struct. , Vol 21, No. 11, (2012).
آمار
تعداد مشاهده مقاله: 21
تعداد دریافت فایل اصل مقاله: 11