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Background and Objectives:  Rail vehicle dynamics are significantly influenced by 
the forces at the wheel-rail contact interface, particularly the wheel-rail adhesion 
force, which is critical for effective braking and acceleration. Continuous monitoring 
of this force is essential to prevent infrastructure damage and enhance 
transportation efficiency. Given the challenges of directly measuring adhesion 
force, alternative methods using state observers have gained prominence. The 
choice of model and estimator efficacy are vital for accurate variable estimation. 
Methods: In this study, the dynamics of the wheelset is simulated in the presence 
of irregularities that can be encountered in the railroad. Estimation of wheel-rail 
adhesion force is done indirectly by nonlinear filters as estimators and their 
accuracies in the estimation are compared to identify the better one. Meanwhile, 
inertial sensors (accelerometer and gyroscope) outputs are used as measuring 
matrix and employed to simulate actual situation and evaluate the estimators’ 
performances. The proposed approach is implemented in MATLAB to assess the 
accuracy and effectiveness of these estimators in determining states and variables. 
Results: The proposed method effectively utilizes longitudinal, lateral, and torsional 
dynamics to estimate wheel-rail adhesion force across varying conditions. 
Experimental results demonstrate high precision, rapid convergence, and low error 
rates in the estimations. 
Conclusion: In this study, the identification of the wheel and rail contact conditions 
is carried out by analyzing the dynamic characteristics of the railway wheelset. The 
results of proposed method can lead to decreasing wheel deterioration and 
operational costs, minimizing high creep levels, maximizing the use of already-
existing adhesion, and improving the frequency of service. It is worth noting that 
the proposed method is beneficial for both conventional railway transport and 
automated driverless trains. 
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Introduction 

Modeling wheel-rail interactions is inherently complex, 

particularly when diverse track conditions are considered. 

As model complexity increases, the computational load 

also rises, leading to extended response times. 

Consequently, to maintain computational efficiency, it is 

essential to focus on the most significant and influential 

components that impact the wheel-rail forces. The 

tangential forces at the wheel-rail  interface  are  the  key  

 

components in the wheel-and-rail interface and are 

caused by wheel and rail relative motion. In fact, the 

available evidence suggests that the motion is defined by 

a gradual sliding phenomenon at the contact surface 

known as creepage. The forces caused by creepage are 

denoted as creep forces, and they control how well a rail 

vehicle accelerates and brakes. Adhesion is determined as 

the ratio of the tangential frictional force between the 

wheel and rail to the load of the wheel. The friction 
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coefficient is defined as the ratio between the friction 

force and the normal force at the contact surface [1]. The 

friction coefficient always limits the adhesion 

coefficient [2].  As a result, there may be differences 

between the adhesion and friction coefficients.  

In [3] the importance of friction in determining wheel 

and rail adhesion is discussed. Estimating adhesion in the 

wheel and rail contact region is a complex procedure 

because it depends on a number of operational variables, 

including the operational mechanism of rail self-cleaning, 

axle load distributions, track irregularities, and processes 

occur at the wheel and rail nonlinear contact interface. 

Effective and continuous monitoring of the adhesion 

coefficient is necessary for estimating the maximum 

adhesion force and preserving a satisfactory braking and 

acceleration performance, but measuring the adhesion 

coefficient with a conventional physical sensor is 

difficult [4]. The adhesion coefficient is highly dependent 

on any materials that are present at the wheel and rail 

interface, including water [5], leaves [6], [7], snow, oil, 

and grease. The wheel and rail adhesion characteristics 

have different behaviour under large sliding conditions 

and as the slip ratio rises, the adhesion coefficient keeps 

rising after it reaches the saturation point instead of 

decreasing [8]. Numerous researchers attempted to solve 

the adhesion problem, and various approaches, including 

statistical, genetic, and mathematical control theory, 

were put forth and applied [9], [10]. Two key elements 

influencing the railway surfaces are train velocity and 

contact area temperature [11]. The maximum adhesion 

coefficient is reached at higher values of both the 

adhesion coefficient and the slip velocity.  

As such, determining the adhesion level is a crucial task 

for a rail vehicle to operate properly. In [12], a novel 

method for figuring out the adhesion coefficient between 

the wheel and rail was presented. Furthermore, a 

different adhesion control method based on tracking the 

adhesion status between the wheel and rail is presented 

in another research paper [13]. Traction power in trains 

can be efficiently utilized when optimal adhesion control 

is achieved [14], [15]. It is noteworthy to mention that in 

order to prevent wheel slippage or slide, the creep 

velocity of the train within the stable region must be 

limited in accordance with the changes seen in the 

adhesion coefficient characteristic curve. In [16] re-

adhesion control is used to bring the trains back to the 

stable region by quickly identifying instances of wheel 

slide and adjusting the torque precisely. The correct 

selection of the initial model by considering the most 

important factors related to adhesion force and the 

selection of an estimator that is compatible with the 

structure of the system under study can create a more 

reliable and accurate output. Due to the nonlinear nature 

of the adhesion coefficient, the use of nonlinear types of 

Kalman filters has been of great interest. An innovative 

method that estimates the wheel and rail states using the 

Kalman-Bucy filter (KBF) approach is suggested in [17] to 

predict the wheel and rail wear, regions of adhesion 

variations or low adhesion, and the development of 

rolling contact fatigue. Additionally, the lateral creep 

force is detected for the purpose of determining the local 

adhesion condition using the KBF [18]. In [19], a model-

based approach utilizing Extended Kalman Filter (EKF) is 

presented to estimate the adhesion force in the wheel 

and rail contact surface. But the strategy is not evaluated 

on every track circumstance. In [20], an EKF based 

estimation method was proposed for estimating the slip, 

creep force, and friction coefficient between the wheel 

and rail surface using the induction motor current, stator 

voltage, and speed. Using multi-rate EKF state 

identification is an alternate method for detecting slip 

velocity. This method determines the traction motor load 

torque accurately by combining the EKF method with the 

multi-rate technique. Faster slip detection, enhanced 

dependability, and better traction performance are the 

benefits of this approach [21].   

The adhesion coefficient was found as a function of slip 

velocity in [22]. To estimate the slip velocity, the 

measured wheel velocity was fed into the EKF. In order to 

attain the best outcome, various EKF configurations were 

examined and adjusted in this study using system and 

measurement noise covariance matrices. Real-time 

wheel-rail contact force and moment estimation based on 

an EKF estimator under typical driving circumstances is 

represented by the researchers in [23]. EKF uses a 

Jacobian matrix in states estimation which is an error-

prone process [24]. To overcome these problems, an 

unscented transformation proposed in [25]. A model-

based approach using Unscented Kalman Filter (UKF) is 

proposed in [26] for estimation of friction coefficient, 

creep force, and creepage. The UKF faces challenges with 

numerical stability when applied to high-dimensional 

systems due to the fact that the central stem (mean) of 

the sigma points carries a heavier weight, often negative, 

in such systems. Nevertheless, estimators appear to be 

unreliable in certain crucial track conditions, so more 

work is required to more effectively monitor these wheel-

rail parameters in real time. Meanwhile, after reviewing 

the literature on railway wheelset dynamics condition 

monitoring, it is found that more effort and improvement 

need to be done to solve the issue of analyzing wheelset 

conditions and updating them to the desired situation in 

order to meet the global transportation vehicle 

expectations of extremely fast, high comfort, increased 

safety, and cost-effectiveness. 

     For optimal operation, the Kalman filter requires a 

system model. Also, mathematical models of important 

processes are necessary for the methodical process of 
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adhesion estimation. In addition to the mentioned 

methods, adhesion condition was estimated [27] and 

wheel-rail contact force was predicted [28] using the 

artificial neural network approach. These methods, 

however, ignore a number of important factors, including 

changes in the wheel and rail profiles and friction levels. 

Use of the traditional wheel-rail contact algorithms [29], 

which are employed in multi-body software packages and 

yield accurate results, is preferable in this situation. 

Nevertheless, the low computational speed of the 

classical contact models makes them unsuitable for real-

time implementation. The fast approximation model 

seems to offer satisfactory precision in order to achieve 

real-time simulation by fulfilling the criteria specified in 

the literature [30]. However, it is not capable of taking 

contact profile changes into account and requires user-

defined coefficients in models. 

     The aim of this research is to assess the adhesion 

force and slip in the contact region of the wheel and rail 

with accuracy by using nonlinear filters approach. It is 

worth noting that in this process EKF and UKF are 

employed for estimation as nonlinear filters. The main 

goal of this experiment is to determine, whether 

employing UKF in the system allows to achieve better 

results in respect to the EKF. Analysis of the measured 

inertial sensors values is used in estimation process. To 

evaluate the observer's performance, a dynamic model is 

constructed, comprising lateral, longitudinal, and yaw 

dynamics of the wheelset. In summary, the manuscript 

introduces a novel, comprehensive approach by 

employing nonlinear filtering that integrates Inertial 

Measurement Units (IMUs) data to estimate wheel-rail 

contact forces in real-time. The Polach model is utilized to 

explain the wheel-rail contact conditions. The rest of this 

research is organized into four parts. First, the details of 

lateral, longitudinal and yaw dynamical model of the 

wheelset are explained. Then, the process of estimator 

design is outlined.  This is followed by an in-depth 

discussion of the experimental results. Finally, the 

conclusion is presented. 

Lateral, Longitudinal and Yaw Dynamical Model of 
the Wheelset 

If the rail is considered to be rigid, the wheelset has 

three degrees of freedom namely longitudinal, lateral, 

and yaw motions. Compared to longitudinal 

displacement, yaw and lateral displacement are very 

small but they have the key role in stability and ride 

comfort of the vehicle. The interaction between the 

wheel and rail contact area influences the dynamic 

performance of the rail vehicle. In order to design 

dynamic control systems and monitor the situation more 

efficiently, it is very important to know the nature of the 

contact force. Also, to prevent the wheel from slipping 

during traction and sliding during braking, it is important 

to know the adhesion not only in normal operating 

conditions but also during traction and braking. 

Estimation of adhesion coefficient, slip ratio, and lateral 

dynamics of rail vehicle in traction and braking modes are 

essential for travel safety and passenger comfort. Wheel-

rail adhesion mechanism is shown in Fig. 1. A more 

complex model leads to an increase in computational load 

and an increase in response time. As a result, in order to 

maintain computational efficiency, it is necessary to focus 

on the most important and influential components 

affecting the wheel and rail forces in the estimation 

process. This approach allows for a more balanced trade-

off between model accuracy and processing speed and 

facilitates practical real-time applications. 
 

 
 

Fig. 1: Wheel-rail adhesion mechanism. 
 

Estimating the dynamics of the wheelset is a complex 

process because the wheel and rail interface is an open 

loop system with variable external conditions. A novel 

model-based methodology has been devised in this study 

to estimate the most important dynamics of the wheelset 

in various contact conditions. Since the Kalman filter (KF) 

is not suitable estimator for the nonlinear contact system 

of wheel and rail, therefore, EKF is employed to estimate 

the adhesion coefficient, slip ratio, and lateral dynamics 

of the wheelset. The system utilized in this research is 

shown in Fig. 2, which consists of two wheels and an axle.  

 

 

 

 

 

 

 

 
 

 

 

 

 
 

Fig. 2: Three-dimensional wheel-rail system model. 
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There is a direct correlation between the lateral and 

yaw dynamics and track irregularities.  The left and right 

wheels' linear speeds will differ if the wheelset moves 

sideways from its initial position. These speeds are 

obtained from the following relations: 

𝑉𝑅𝑤 = 𝜔𝑅 . [𝑟 − 𝜅𝑤(𝑦 − 𝑦𝑑)]                                              (1) 

𝑉𝐿𝑤 = 𝜔𝐿 . [𝑟 + 𝜅𝑤(𝑦 − 𝑦𝑑)]                                                 (2) 

where 𝑉𝑅𝑤 and 𝑉𝐿𝑤 are longitudinal velocity of the right 

and left wheels, 𝜔𝑅  and 𝜔𝐿 are angular velocity of the 

right and left wheels, r is wheel radius, 𝜅𝑤is wheel 

conicity, 𝑦 is lateral movement, and 𝑦𝑑  is track 

irregularities in lateral direction. 

The wheelset's dynamic characteristics are also 

influenced by the creep forces that arise in the contact 

zones between the wheel and rail. These creep forces, 

which can be classified as longitudinal creepage (𝜉𝑥) and 

lateral creepge (𝜉𝑦) depending on the direction of 

movement, are brought on by the creeps that arise from 

the wheels' relative speed to the rail. The creepage of 

both wheels in the wheelset in the lateral and longitudinal 

directions are displayed in equations (3)-(5).  

𝜉𝑅𝑥 =
𝑟𝜔𝑅−𝑉

𝑉
− [

𝑆�̇�

𝑉
+

𝜅𝑤(𝑦−𝑦𝑑)

𝑟
]                                          (3) 

𝜉𝐿𝑥 =
𝑟𝜔𝐿−𝑉

𝑉
+

𝑆�̇�

𝑉
+

𝜅𝑤(𝑦−𝑦𝑑)

𝑟
                                              (4) 

𝜉𝑦 = 𝜉𝐿𝑦 = 𝜉𝑅𝑦 =
�̇�

𝑉
− 𝜓                                                      (5) 

where 𝜉𝑅𝑥  and 𝜉𝐿𝑥  are longitudinal creepage of the right 

and left wheels, 𝜉𝑅𝑦  and 𝜉𝐿𝑦 are lateral creepage of the 

right and left wheels, 𝑆 is half gauge of track, �̇� is yaw 

rate, �̇� is lateral velocity, 𝜓 is yaw angle, and 𝑉 is train 

longitudinal velocity.    

In equations (3) and (4), the expressions 
𝑟𝜔𝑅−𝑉

𝑉
 and 

𝑟𝜔𝐿−𝑉

𝑉
 do not include dynamics related to 𝑦 and 𝜓, 

therefore can be ignored to simplify longitudinal creepage 

equations. In addition, the dynamics consist of lateral 

displacement and yaw rate are sufficient in identifying 

alterations in the wheel-rail contact conditions. The 

simplified longitudinal creepage equations are as follows:      

𝜉𝑅𝑥 = −
𝑆�̇�

𝑉
−

𝜅𝑤(𝑦−𝑦𝑑)

𝑟
                                                          (6) 

𝜉𝐿𝑥 =
𝑆�̇�

𝑉
+

𝜅𝑤(𝑦−𝑦𝑑)

𝑟
                                                              (7) 

The total slip 𝜉𝑗 is a combination of longitudinal 𝜉𝑗𝑥  and 

lateral 𝜉𝑗𝑦  slips and obtained from the following equation: 

𝜉𝑗 = √𝜉𝑗𝑥
2 + 𝜉𝑗𝑦

2             j=L or R                                         (8) 

The creep force 𝐹𝑗 can be expressed as a nonlinear 

function of the slip, which is determined by utilizing the 

given equation in (9). 

𝐹𝑗 = 𝜇𝑗𝐹𝑁𝑗                        j=L or R                                        (9) 

In normal conditions and for small amounts of 

creepage (microslip), 𝐹𝑗 changes linearly with creepage. 

As the sliding speed increases, the creep force changes 

nonlinearly and reaches the maximum value (saturation), 

and if the increase in sliding speed continues, it begins a 

downward trend. In general, to describe wheelset stable 

and unstable behaviors, the adhesion-slip curves can be 

divided into three areas. The initial section displays a 

nearly linear pattern, followed by a nonlinear segment 

known as the high slip ratio region, and concluding with 

a negative slope indicating the unstable zone of the 

curve. Fig. 3 showes the details. 

The nonlinear region is strongly influenced by factors 

such as pollution and weather and it results in large and 

uncertain changes in the creep force. The analysis of 

contact force distribution in both the longitudinal and 

lateral orientations was thoroughly studied in [31]. These 

forces can be calculated using equation (10). 

𝐹𝑗𝑖 = 𝐹𝑗

𝜉𝑗𝑖

𝜉𝑗
        j=L or R       &     i= x or y                        (10) 

 
     Fig. 3: Adhesion curves [9]. 

An entire wheelset model encompasses every aspect 

of the interactions between wheels and rails, facilitating 

the analysis of wheelset dynamics. The given equations 

below represent the motion of the wheelset at any 

location along the creep curve for yaw, rotational, 

torsional, lateral, and longitudinal dynamics. 

�̈� =
𝐹𝑅𝑥+𝐹𝐿𝑥

𝑀𝑡
                                                                    (11)   

�̈� =
−𝐹𝑅𝑦−𝐹𝐿𝑦+𝐹𝐶

𝑚𝑤
                                                                 (12) 

�̈� =
𝐹𝑅𝑥𝑆−𝐹𝐿𝑥𝑆−𝐾𝑤𝜓

𝐽𝑤
                                                             (13) 

𝑇𝑠 = 𝑡𝑠𝜃𝑠 + 𝐶𝑣𝑖𝑠(𝜔𝑅 − 𝜔𝐿)                                              (14) 

𝜃𝑠 = ∫(𝜔𝑅 − 𝜔𝐿)𝑑𝑡                                                          (15) 



Nonlinear Filter-Based Estimation of Wheel-Rail Contact Forces and Related Considerations … 

J. Electr. Comput. Eng. Innovations, 13(2): 353-364, 2025                                                                      357 

�̇�𝐿 =
𝑇𝑠−𝑇𝐿

𝐽𝐿
                                                                            (16) 

�̇�𝑅 =
𝑇𝑚−𝑇𝑠−𝑇𝑅

𝐽𝑅
                                                                     (17) 

where 𝐹𝑅𝑥  and 𝐹𝐿𝑥 ara right and left wheel creep forces 

in longitudinal direction, 𝑀𝑡 is rail vehicle mass, 𝐹𝑅𝑦 and 

𝐹𝐿𝑦 ara right and left wheel creep forces in lateral 

direction, 𝑚𝑤 is total weight of wheel with induction 

motor, 𝐹𝑐 is centrifugal force, 𝐾𝑤 is yaw stiffness, 𝐽𝑤 is 

wheelset moment of inertia, 𝑇𝑠 is torsional torque, 𝑡𝑠 is 

torsional Stiffness of axle, 𝜃𝑠 is twist angle, 𝐶𝑣𝑖𝑠 is viscous 

material damping of the shaft, 𝑇𝑅  and 𝑇𝐿  are right and left 

wheel tractive torques, 𝑇𝑚 is motor torque, and 𝐽𝑅 and 𝐽𝐿 

are inertias of right and Left wheel. 

     In equation (12) 𝐹𝐶  is considered when the wheels 

travel along a crooked railroad track. In equation (14) 𝐶𝑣𝑖𝑠 

can be disregarded because it is typically very small. In the 

above equations, 𝐹𝑥𝑅, 𝐹𝑥𝐿, 𝐹𝑦𝑅, 𝐹𝑦𝐿, 𝑇𝑚, 𝑇𝐿 , and 𝑇𝑅  are 

defined as follows: 

𝐹𝑅𝑥 =
𝐹𝑅

𝜉𝑅
[[

𝑟𝜔𝑅−𝑉

𝑉
− [

𝑆�̇�

𝑉
+

𝜅𝑤(𝑦−𝑦𝑑)

𝑟
]]                              (18) 

𝐹𝐿𝑥 =
𝐹𝐿

𝜉𝐿
[
𝑟𝜔𝐿−𝑉

𝑉
+

𝑆�̇�

𝑉
+

𝜅𝑤(𝑦−𝑦𝑑)

𝑟
]                                    (19) 

𝐹𝑅𝑦 =
𝐹𝑅

𝜉𝑅
[
�̇�

𝑉
− 𝜓]                                                                   (20) 

𝐹𝐿𝑦 =
𝐹𝐿

𝜉𝐿
[
�̇�

𝑉
− 𝜓]                                                                  (21) 

𝑇𝑚 = 𝜇𝑀𝑡𝑔𝑟                                                                        (22) 

𝑇𝐿 = 𝑟𝐹𝐿𝑥                                                                                 (23) 

𝑇𝑅 = 𝑟𝐹𝑅𝑥                                                                                                         (24) 

As can be seen from the above equations, the 

dynamics of the wheelset are complex and all the 

movements of the wheelset are interdependent. Due to 

the powerful interactions exist between different wheel 

movements in lateral and longitudinal directions, it is of 

great importance to utilize a general model that 

encompasses all the motions associated with contact 

forces in the investigation of the wheelset dynamics. 

Wheels directly interact with the rail, as a result, any 

alterations in contact conditions will affect the wheelset 

dynamics.  

This study uses a model-based methodology to 

estimate the variables related to wheel-rail contact. 

Model-based estimation utilizes the system's information 

through a mathematical framework and measured 

responses to the input to estimate the state variables of 

the system in real time. For practical purposes, the 

estimator design should be as simple as possible while 

taking into account the wheelset dynamics that are 

associated with the contact conditions. Therefore, the 

wheelset model [32] is simplified first.  

�̈� = −
𝐹𝑅

𝑚𝑤𝜉𝑅
[
�̇�

𝑉
− 𝜓] −

𝐹𝐿

𝑚𝑤𝜉𝐿
[
�̇�

𝑉
− 𝜓]                               (25) 

�̈� =
𝐹𝑅

𝐽𝑤𝜉𝑅
[−

𝑆�̇�

𝑉
−

𝜅𝑤(𝑦−𝑦𝑡)

𝑟
] 𝑆 −

𝐹𝐿

𝐽𝑤𝜉𝐿
[
𝑆�̇�

𝑉
+

𝜅𝑤(𝑦−𝑦𝑡)

𝑟
]𝑆 −

𝐾𝑤𝜓

𝐽𝑤
      (26) 

The simplified model has numerous benefits. The 

primary advantage lies in the straightforward estimator 

design with the fewest number of states, which enables 

the fast convergence of the estimator. In addition, in the 

simplified model, no input torque is required for the 

estimator, and yaw and lateral dynamics are affected by 

track disturbances. Since the relation between the 

adhesion coefficient 𝜇 and slip 𝜉 is nonlinear, assuming 

that the wheels on both sides, i.e. the left and right, have 

the same contact conditions, first, equations (25) and (26) 

are arranged and the lateral and yaw dynamic models of 

the wheelset are derived. 

�̈� = −
1

𝑉𝑚𝑤
(
𝐹𝑅

𝜉𝑅
+

𝐹𝐿

𝜉𝐿
)�̇� +

1

𝑚𝑤
(
𝐹𝑅

𝜉𝑅
+

𝐹𝐿

𝜉𝐿
)𝜓                         (27) 

�̈� = −
𝑆2

𝑉𝐽𝑤
(

𝐹𝑅

𝜉𝑅
+

𝐹𝐿

𝜉𝐿
) �̇� −

𝑆

𝑟𝐽𝑤
𝜅𝑤 (

𝐹𝑅

𝜉𝑅
+

𝐹𝐿

𝜉𝐿
) 𝑦 +

𝑆

𝑟𝐽𝑤
𝜅𝑤 (

𝐹𝑅

𝜉𝑅
+

𝐹𝐿

𝜉𝐿
) y𝑡 −

𝐾𝑤

𝐽𝑤
𝜓                                                (28) 

In the second step, by considering the equalities in (29) 

and replacing them in equations (27) and (28), equations 

(30) and (31) are obtained. 

𝐹𝑅 = 𝐹𝐿 = 𝐹𝑎   &       𝜉𝐿 = 𝜉𝑅 = 𝜉                                    (29) 

�̈� = −
2𝐹𝑎

𝜉𝑚𝑤
(
�̇�

𝑉
− 𝜓)                                                             (30) 

�̈� = −
2𝐹𝑎𝑆2

𝜉𝑉𝐽𝑤
�̇� −

2𝐹𝑎𝑆

𝜉𝑟𝐽𝑤
𝜅𝑤(𝑦 − y𝑡) −

𝐾𝑤

𝐽𝑤
𝜓                       (31) 

Other process variables are defined as follows: 

𝜉 = √(
𝜅𝑤(𝑦−𝑦𝑑)

𝑟
+

𝑆�̇�

𝑉
)2 + (

�̇�

𝑉
− 𝜓)2                                (32) 

𝜇 = 𝜇0((1 − 𝐷)𝑒−𝐵𝜉𝑉 + 𝐷)                                             (33) 

𝐹𝑎 =
2𝐹𝑁𝜇

𝜋
(

𝑘𝐴𝜀

1+(𝑘𝐴𝜀)2
+ arctan(𝑘𝑆𝜀))                                 (34) 

𝜀 =
2𝜋𝑎2𝑏𝑐

3𝐹𝑁𝜇𝑘−1
𝜉𝑘−1                                                                 (35) 

where 𝐹𝑁 is the normal force, D and B are reduction 

factors associated with distinct friction coefficients, 𝐺 is 

shear module, a and b are the semi-axis length of the 

ellipse in contact zone, and 𝐶11 is the Kalker coefficient. 

In the following, the design of the estimator is 

discussed. 

Nonlinear Filter-Based Estimation of Wheel-Rail 
Contact Forces 

The details of the filters used for estimation of wheel-

rail lateral dynamics can be found in the following 

subsections. The discrete-time nonlinear model is 

presented as follows: 

𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘) + 𝑤𝑘                                                        
 𝑧𝑘 = ℎ(𝑥𝑘) + 𝑣𝑘                                                                 (36) 

where 𝑓(. ) represents the dynamics of wheelset, h(. ) is 

the relationship between the observation 𝑧𝑘  and the state 
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vector 𝑥𝑘, 𝑢𝑘refers to the input vector, while 𝑤𝑘  and 

𝑣𝑘   represent the vectors of noise that affect the process 

and measurement respectively.  The state variables used 

to create the EKF algorithm process matrix include lateral 

velocity (�̇�), yaw rate (�̇�), slip ratio (𝜉), friction coefficient 

(𝜇), and adhesion force (𝐹𝑎). Besides, lateral acceleration 

(�̈�) and yaw rate are considered to create the 

measurement matrix. 

𝑥 = [�̇� �̇�   𝜉 𝜇 𝐹𝑎
]
𝑇

                                                   

𝑧 = [�̈�     𝜓]̇                                                                           (37) 

To design nonlinear filter, the model used for 

estimation must also be discrete. Therefore, equations 

(30)-(34) should be discretized, the result of which is given 

below. 
 

�̇�𝑘 = �̇�𝑘−1 −
2𝜏𝐹𝑎𝑘−1

𝜉𝑘−1𝑚𝑤
[
�̇�𝑘−1

𝑉
− 𝜓]                                       (38)                                            

�̇�𝑘 = �̇�𝑘−1 −
2𝜏𝑆𝐹𝑎𝑘−1

𝜉𝑘−1𝐽𝑤
[
𝜅𝑤(𝑦−𝑦𝑑)

𝑟
+

𝑆�̇�𝑘−1

𝑉
] −

𝐾𝑤𝜓

𝐽𝑤
         (39) 

𝜉𝑘 = √(
𝜅(𝑦−𝑦𝑑)

𝑟
+

𝑆�̇�𝑘−1

𝑉
)2 + (

�̇�𝑘−1

𝑉
− 𝜓)2                      (40) 

𝜇𝑘 = 𝜇0 ((1 − 𝐷)𝑒−𝐵𝜉𝑘−1𝑉 + 𝐷)                                    (41) 

𝐹𝑎𝑘 =
2𝐹𝑁𝜇𝑘−1

𝜋
(

𝑘𝐴𝜀

1+(𝑘𝐴𝜀)2
+ arctan(𝑘𝑆𝜀))                        (42) 

The components of the measurement matrix are as 

follows: 

�̈�𝑘 = −
2𝐹𝑎

𝜉𝑚𝑤
(
�̇�𝑘−1

𝑉
− 𝜓)                                                      (43) 

The second component of the measurement matrix, 

i.e. �̇�, is obtained as equation (39). 

A.  Extended Kalman Filter  

The EKF is an improved version of the conventional KF 

designed to handle nonlinear systems. The primary 

objective of this research is to identify the best estimation 

for the state vector of the wheelset. The EKF algorithm 

can be given by the following equations:                   

𝑃𝑘+1|𝑘 = 𝐹𝐾𝑃𝑘𝐹𝐾
𝑇 + 𝑄                                                      (44) 

𝐾𝐾 = 𝑃𝑘+1|𝑘𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘+1|𝑘𝐻𝑘

𝑇 + 𝑅)−1                          (45) 

�̂�𝑘+1|𝑘 =  𝑓(�̂�𝑘|𝑘 . 𝑢𝑘)                                                          (46) 

�̂�𝑘+1|𝑘+1 = �̂�𝑘+1|𝑘 + 𝐾𝐾(𝑧𝑘 − ℎ(�̂�𝑘+1|𝑘))                    (47) 

𝑃𝑘+1|𝑘+1 = (𝐼 − 𝐾𝐾𝐻𝑘)𝑃𝑘+1|𝑘                                          (48)           

where  𝑃𝑘+1|𝑘  is the priori prediction error covariance 

matrix, 𝑃𝑘+1|𝑘+1 is the posteriori prediction error 

covariance matrix, 𝐾𝐾  is the Kalman gain, �̂�𝑘+1|𝑘  is the 

priori state prediction vector, �̂�𝑘+1|𝑘+1is the posteriori 

state prediction vector, 𝑄 and 𝑅 are the covariance 

matrixes of process and measurement noise, I is the unit 

matrix symbol, and 𝐹𝐾 and 𝐻𝑘  are the Jacobians of the 

system and the measurement equations defined as 

follows:   

𝐹𝐾 =

[
 
 
 
 
 
 
 
 

𝜕�̇�𝑘

𝜕�̇�𝑘

𝜕�̇�𝑘

𝜕�̇�𝑘

𝜕𝜉𝑘

𝜕�̇�𝑘

𝜕𝜇𝑘

𝜕�̇�𝑘

𝜕𝐹𝑎𝑘

𝜕�̇�𝑘

 

𝜕�̇�𝑘

𝜕�̇�𝑘

𝜕�̇�𝑘

𝜕�̇�𝑘

𝜕𝜉𝑘

𝜕�̇�𝑘

𝜕𝜇𝑘

𝜕�̇�𝑘

𝜕𝐹𝑎𝑘

𝜕�̇�𝑘

 

𝜕�̇�𝑘

𝜕𝜉𝑘

𝜕�̇�𝑘

𝜕𝜉𝑘

𝜕𝜉𝑘

𝜕𝜉𝑘

𝜕𝜇𝑘

𝜕𝜉𝑘

𝜕𝐹𝑎𝑘

𝜕𝜉𝑘

     

𝜕�̇�𝑘

𝜕𝜇𝑘

𝜕�̇�𝑘

𝜕𝜇𝑘

𝜕𝜉𝑘

𝜕𝜇𝑘

𝜕𝜇𝑘

𝜕𝜇𝑘

𝜕𝐹𝑎𝑘

𝜕𝜇𝑘

 

𝜕�̇�𝑘

𝜕𝐹𝑎𝑘

𝜕�̇�𝑘

𝜕𝐹𝑎𝑘

𝜕𝜉𝑘

𝜕𝐹𝑎𝑘

𝜕𝜇𝑘

𝜕𝐹𝑎𝑘

𝜕𝐹𝑎𝑘

𝜕𝐹𝑎𝑘

 

]
 
 
 
 
 
 
 
 

                      (49) 

 𝐻𝑘 = [

𝜕�̈�𝑘

𝜕�̇�𝑘

𝜕�̈�𝑘

𝜕�̇�𝑘

𝜕�̈�𝑘

𝜕𝜉𝑘

𝜕�̈�𝑘

𝜕𝜇𝑘

𝜕�̈�𝑘

𝜕𝐹𝑎𝑘

𝜕�̇�𝑘

𝜕�̇�𝑘

𝜕�̇�𝑘

𝜕�̇�𝑘

𝜕�̇�𝑘

𝜕𝜉𝑘

𝜕�̇�𝑘

𝜕𝜇𝑘

𝜕�̇�𝑘

𝜕𝐹𝑎𝑘

]                               (50) 

The Jacobian matrices mentioned in (49) and (50) are 

used to specify the process and measurement matrices, 

which are shown in (51) and (52) respectively. 

𝐹𝑘 =

[
 
 
 
 
 
 1 − 𝑎11 0 −

𝐹𝑎𝑘−1

𝜉𝑘−1
𝑎13 0    𝑎13

0 1 −
𝑚𝑤𝑆2

𝐽𝑤
𝑎11

𝐹𝑎𝑘−1

𝜉𝑘−1
𝑎23 0 −𝑎23

−
𝑚𝑤

2𝜏𝑉
𝑎13

𝐽𝑤

2𝜏𝑉
𝑎23 0 0 0

0 0 𝑎43 0 0
0 0 𝑎53 𝑎54 0 ]

 
 
 
 
 
 

                                                                                                                                      

                                                                                               (51) 

in which matrix elements are as follows: 

𝑎11 =
2𝜏𝐹𝑎𝑘−1

𝜉𝑘−1𝑚𝑤𝑉
  

𝑎13 = −
2𝜏

𝜉𝑘−1𝑚𝑤
[
�̇�𝑘−1

𝑉
− 𝜓]  

𝑎23 =
2𝜏𝑆

𝜉𝑘−1𝐽𝑤
[
𝜅𝑤(𝑦−𝑦𝑑)

𝑟
+

𝑆�̇�𝑘−1

𝑉
]  

𝑎43 = −𝐵𝑉𝜇0((1 − 𝐷)𝑒−𝐵𝜉𝑘−1𝑉  

𝑎53 =  
4𝑎2𝑏𝑐

3
(
𝑘𝐴(1−(𝑘𝐴𝜀)2)

(1+(𝑘𝐴𝜀)2)2
+

𝑘𝑆

1+(𝑘𝑠𝜀)2
) 

𝑎54 = (𝑘𝐴
𝐹𝑁𝜀

𝜋
)3(

2𝜋

𝐹𝑁(1+(𝑘𝐴𝜀)2)
)2 +

2𝐹𝑁

𝜋
𝑎𝑟𝑐𝑡𝑔𝑘𝑠𝜀 −

2𝑘𝑆𝐹𝑁𝜀

𝜋(1+(𝑘𝑠𝜀)2)
  

𝐻𝑘 = [
−

1

𝜏
𝑎11 0 −

𝐹𝑎𝑘−1

𝜏𝜉𝑘−1
𝑎13 0   

1

𝜏
𝑎13

0 1 −
𝑚𝑤𝑆2

𝐽𝑤
𝑎11

𝐹𝑎𝑘−1

𝜉𝑘−1
𝑎23 0 −𝑎23

]           

                                                                                               (52)      

In estimating adhesion based on longitudinal, lateral 

and yaw dynamics, the measurement matrix includes 

lateral acceleration and yaw rate. In addition, inertial 

sensors are used to measure lateral acceleration and yaw 

rate.  

Finally, the outputs obtained from the measurements 

of the sensors (accelerometer and gyroscope) and the 

predicted measurements are used to estimate the states. 

Fig. 4 shows the process. 
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Fig. 4: State estimation overview. 

Typically, the extended Kalman filter is not considered 

to be an optimal estimator and still has some 

shortcomings such as:  

(1) Utilizing with the highly nonlinear system can be 
quite challenging. 

(2) Since it needs Jacobian matrices for linearization, 
analytical derivation of this matrices is difficult and 
numerical derivation may impose a higher 
computational cost. 

(3) The linearization introduces approximation errors 
that are not accounted for in the prediction and 
update steps. 

(4) Due to the uncertainty surrounding the values of Q 
and R, they are acquired through trial-and-error 
approaches, resulting in a laborious and time-
consuming process.  

Referring to the EKF deficiencies, it is necessary to use 

an estimator that does not have such drawbacks in the 

estimation process. In the following, alternative 

estimators are investigated and their performances are 

compared. 

B.  Unscented Kalman Filter 

The UKF is an alternative approach to linearization. 

While EKF treats the nonlinearity using analytical 

linearization, the UKF performs statistical linearization 

based on a set of rules. The approximation errors are 

consequences of linearization, which lead the EKF to 

underestimate state uncertainties. The UKF is formulated 

through the integration of the unscented transformation 

(UT) method, which is for calculating the statistics of a 

random variable that undergoes a nonlinear 

transformation. It is assumed that the wheelset system is 

in discrete-time nonlinear form with the state vector �̂�𝑘, 

the input vector 𝑢𝑘, and the observation vector 𝑧𝑘. 

𝑥𝑘+1 = 𝑓(�̂�𝑘 , 𝑢𝑘) + 𝑤𝑘              𝑤𝑘~(0, 𝑄𝑘)                        (53) 

𝑧𝑘 = ℎ(�̂�𝑘 , 𝑢𝑘) + 𝑣𝑘      𝑣𝑘~(0, 𝑅𝑘)                                 (54)  

where Q and R are the system and observation noise 

covariance respectively. 

At the beginning of the UKF implementation to 

estimate the state variables of the wheelset, a set of 

2𝑛𝑥 + 1 weighted samples or sigma points are 

determined as follows:  

𝜒𝑘|𝑘
0 = �̂�𝑘|𝑘                                              𝑖 = 0                             (55) 

𝜒𝑘|𝑘 = �̂�𝑘|𝑘 + (√(𝑛𝑥 + 𝜆)𝑃𝑘|𝑘)𝑖
        𝑖 = 1,… , 𝑛𝑥  

𝜒𝑘|𝑘 = �̂�𝑘|𝑘 − (√(𝑛𝑥 + 𝜆)𝑃𝑘|𝑘)𝑖
        𝑖 = 𝑛𝑥 + 1,… , 2𝑛𝑥    

𝑤𝑚
(0)

=
𝜆

𝜆+𝑛𝑥
                                                                            (56) 

𝑤𝑐
(0)

=
𝜆

𝜆+𝑛𝑥
+ 1 − 𝛼2 + 𝛽                                                (57) 

𝑤𝑐
(𝑖)

= 𝑤𝑚
(𝑖)

=
𝜆

2(𝜆+𝑛𝑥)
              𝑖 = 1,… ,2𝑛𝑥                   (58)  

where �̂�𝑘|𝑘 is the mean of 𝑥𝑘+1, (√(𝑛𝑥 + 𝜆)𝑃𝑘|𝑘)𝑖  is the ith-

column of the matrix square root, 𝑃𝑘|𝑘  is the covariance 

of 𝑥𝑘+1, 𝑛𝑥 is the dimension of the state variables. The 

weights 𝑤𝑚 and 𝑤𝑐  are utilized for determining the mean 

and covariance respectively. 𝛼 is employed to regulate 

the distribution of the sigma points around �̂�𝑘|𝑘 and 

usually set to a small positive value between 0 and 1. 𝛽 is 

a non-negative term utilized to incorporate prior 

knowledge of the distribution of 𝑥𝑘+1. Finally, 𝜆 =

𝛼2(𝑛𝑥 + 𝜌) − 𝑛𝑥  is a scaling parameter in which 𝜌 is a 

secondary scaling parameter usually set to 0. It should be 

noted that in this study, the mentioned parameters are 

set as follows:  

𝛼 = 1,     𝛽 = 0,    𝜌 = 1 
Sigma points 𝜒𝑘|𝑘 are propagated through the 

nonlinear equations of the wheelset system. The 

transformed sigma points are assessed for each of the 0 

to 2𝑛𝑥 points in the manner outlined below:  

𝜒𝑘+1|𝑘
(𝑖)

= 𝑓(𝜒𝑘|𝑘
(𝑖) , 𝑢𝑘)                                                          (59) 

The mean and covariance of the priori state estimation 

at time 𝑘 are obtained by the following equations: 

�̂�𝑘+1|𝑘 = ∑ 𝑤𝑚
(𝑖)

𝜒𝑘+1|𝑘
(𝑖)2𝑛𝑥

𝑖=0                                                   (60) 

𝑃𝑘+1|𝑘 = ∑ 𝑤𝑐
(𝑖)

(𝜒𝑘+1|𝑘
(𝑖)

−
2𝑛𝑥
𝑖=0 �̂�𝑘+1|𝑘)(𝜒𝑘+1|𝑘

(𝑖)
−

�̂�𝑘+1|𝑘)
𝑇 + 𝑄𝑘                                                                       (61)  

In order to implement the measurement update, the 

equations (62)-(69) will be utilized. The transformed 

sigma points can be utilized to predict the measurements 

through the known nonlinear measurement equation. 

After rearranging the weighted sigma points, the 

covariance of the predicted measurement can be 

estimated. To consider the measurement noise, the 

covariance matrix 𝑅𝑘 should be incorporated. Following 

that, the cross covariance can be estimated as per 

equation (65). 

𝜒𝑘|𝑘
(𝑖)

= [�̂�𝑘|𝑘
(𝑖)

�̂�𝑘|𝑘
(𝑖)

± (√(𝑛𝑥 + 𝜆)𝑃
𝑘|𝑘

(𝑖)
)
𝑖

]                             (62) 

𝜉𝑘+1|𝑘
(𝑖)

= ℎ𝑘+1(𝜒𝑘+1|𝑘
(𝑖)

, 𝑈𝑘+1)                                            (63)            

The expected measurement �̂�𝑘+1|𝑘 is as: 

 �̂�𝑘+1|𝑘 = ∑ 𝑤𝑚
(𝑖)

𝜉𝑘+1|𝑘
(𝑖)2𝑛𝑥

𝑖=0                                                    (64) 
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Using the predicted sigma points, 𝑃𝑘+1|𝑘
𝑥𝑧 and 𝑃𝑘+1|𝑘

𝑧𝑧  

also determines as follows: 

𝑃𝑘+1|𝑘
𝑧𝑧 = ∑ 𝜔𝑖

(𝑐)2𝑛
𝑖=0 (𝜉𝑘+1|𝑘

(𝑖)
− �̂�𝑘+1|𝑘)(𝜉𝑘+1|𝑘

(𝑖)
−

�̂�𝑘+1|𝑘)
𝑇 + 𝑅𝑘                                                                      (65)                              

𝑃𝑘+1|𝑘
𝑥𝑧 = ∑ 𝜔𝑖

(𝑐)2𝑛
𝑖=0 (𝜒𝑘+1|𝑘

(𝑖)
− �̂�𝑘+1|𝑘)(𝜉𝑘+1|𝑘

(𝑖)
− �̂�𝑘+1|𝑘)

𝑇  

                                                                                               (66)                                                                                     

The mean and square root of covariance for the states 

are recalculated based on the actual measurement.  

�̂�𝑘+1|𝑘+1 = �̂�𝑘+1|𝑘 + 𝐾𝑘+1(𝑧𝑘+1 − �̂�𝑘+1|𝑘)                    (67) 

𝑃𝑘+1|𝑘+1 = 𝑃𝑘+1|𝑘 − 𝐾𝐾+1𝑃𝑘+1|𝑘
𝑧𝑧 𝐾𝑘+1

𝑇                            (68) 

𝐾𝑘+1 = 𝑃𝑘+1|𝑘
𝑥𝑧 (𝑃𝑘+1|𝑘

𝑧𝑧 )−1                                                  (69) 

From the above equations shown for UKF, it can be 

concluded that this filter has two main advantages 

compared to EKF, firstly, there is no need for Jacobians in 

UKF implementation, and secondly, UKF can estimate the 

mean and covariance of the states accurately the second 

order for any nonlinearity.  

Results 

In this part, wheel and rail adhesion force is estimated 

based on the lateral, longitudinal, and yaw dynamics of 

the wheelset. The values of the parameters mentioned in 

the equations of the previous sections are given in Table 

1 and Table 2. It is worth noting that all simulations are 

done in MATLAB environment. 

 
Table 1: Polach model parameters under different friction 
condition 
  
 
 
 
 
 
 
 
 
 
Table 2: Parameter values used in the simulation 
 

𝐾𝑠(
𝑁

𝑚
) 

6063260 
𝐾𝑤  (

𝑁

𝑟𝑎𝑑
) 

5 × 106 

𝑟 (𝑚) 0.5 𝑆(𝑚) 0.75 

𝐽𝑅(𝐾𝑔𝑚2) 134 𝜅𝑤 (𝑟𝑎𝑑) 0.15 

𝐽𝐿(𝐾𝑔𝑚2) 64 𝑀𝑡 (𝐾𝑔) 15000 

𝐽𝑤(𝐾𝑔𝑚2) 700 FN (𝐾𝑁) 60 

𝑚𝑤 (𝐾𝑔) 1250 G (
𝑁

𝑚2) 8.4×1010 

     The values of friction coefficients and other required 

parameters used in equations are as follows: 

𝜇0 = {

0.55         𝑡 < 10     
0.3      10 ≤ 𝑡 < 20
0.06   20 ≤ 𝑡 < 30
0.03   30 ≤ 𝑡 < 35

 

a = 0.0015 m, b = 0.0075 m, C11 =4.12, V= 15 
𝑚

𝑠
 

Matrices Q and R are as follows: 

Q = diag([5× 10−14,1× 10−14,1× 10−14,1 × 10−14 , 
1× 10−14]) 

R= diag([1× 10−1, 1× 10−1]) 
 

At the beginning of the simulation, Fig. 5 is developed 

based on the equations (11)-(17). In addition, a random 

input 𝑦𝑑  is created to simulate the dynamics of the 

wheelset in the presence of irregularities that can be 

encountered in the railroad. In this model, the dynamics 

of each wheel in the right and left sides are shown 

separately.  

Finally, the output of right and left wheel blocks 

attached to the lateral acceleration and yaw rate blocks. 

The main goal of developing this simulink model is to 

simulate the outputs of accelerometer and gyroscope 

sensors. In estimation process these outputs along with 

the predicted variables of the same type are used to 

estimate the state variables. Figs. 6 and 7 show the results 

of measuring lateral acceleration and yaw rate, 

respectively which are obtained from simulink execution. 

In Fig. 8 the diagrams of lateral speed, yaw rate, slip, 

adhesion coefficient, and adhesion force of the wheelset 

are shown. These outputs show the simulation of the 

actual conditions of the system. In the estimator 

evaluation stage, the trajectories of these graphs are used 

as a pattern and the estimator's compliance in following 

the relevant pattern is used as a criterion to check the 

accuracy of the estimator in the estimation of state 

variables.  

     In Figs. 9-13 the diagrams of yaw rate, lateral speed, 

slip ratio, adhesion coefficient and adhesion force of the 

wheelset are shown in three situations, UKF-baesd and 

EKF-based estimated, and actual.  

In Fig. 9, the actual and estimated trajectories of yaw 

rate change approximately between 0.8 and -0.8 and 

from the beginning the convergence of the estimated 

trajectories to the actual one is evident.  

In Fig. 10, the actual and estimated trajectories of 

lateral velocity are depicted. As can be seen, the UKF-

based estimated lateral velocity converges to the actual 

one in less than 1 second but this convergence in EKF-

based estimation occurs after 5 seconds.  

Therefore, the UKF estimator has provided an 

acceptable results regarding these two variables. In Figs. 

11-13 which are related to the slip, adhesion coefficient 

and adhesion force respectively, the outputs of the two 

estimators are drawn and compared with real variables of 

the same type. 

 

 

Model parameter 
Wheel–rail conditions 

Dry Wet Low Very Low 

kA 1 1 1 1 

kS 0.4 0.4 0.4 0.4 

D 0.6 0.2 0.2 0.1 

B 0.4 0.4 0.4 0.4 
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Fig. 5: Wheelset dynamics simulink model. 

 
Fig. 6: Output diagram of accelerometer. Fig. 7: Output diagram of gyroscope. 
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Fig. 8: dynamics of the wheelset. 

 
 

Fig. 9: Estimated, and actual trajectories of yaw rate. 
  

 
 

Fig. 10: Estimated, and actual trajectories of lateral velocity. 

In Figs. 11-13 the simulation is carried out for 10 

seconds to calculate slip ratio, adhesion coefficient, and 
adhesion force. All mentioned variables are estimated by 

EKF and UKF estimators.  

 

Due to the irregularities exist in the lateral direction, 

fluctuations in the graphs are inevitable.  
 

 
Fig. 11: Estimated, and actual trajectories of slip. 

 
Fig. 12: Estimated and actual trajectories of adhesion 

coefficient. 

In all three figures, UKF-based estimated outputs 

follow the actual trajectories of the variables with high 

convergence and accuracy but there is no necessary 
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convergence in the estimation of the mentioned variables 

based on EKF, which is more evident in estimating slip 

ratio and adhesion force. As can be seen in Fig. 12, 
estimation of adhesion coefficient with EKF has 

acceptable output up to 6 second but non-convergence 

after 6 second leads to ignoring this estimator as an ideal 

one. Therefore, in addition to the successful performance 

in estimating lateral velocity and yaw rate, UKF also shows 

a favorable performance in estimating slip ratio, adhesion 
coefficient, and adhesion force. 

 

 
 

   Fig. 13: Estimated and actual trajectories of adhesion force. 

Conclusion and Future Work  

The performance of railway operation mainly is 

affected by wheel-rail contact forces but it is not possible 

to measure these contact forces and interrelated 

dynamics directly, therefore it is necessary to estimate 

these wheelset dynamics through state of art technique. 

In this research paper, a railway wheelset model and a 
novel observer-based estimator are developed in 

Simulink/MATLAB to calculate and estimate nonlinear 

wheelset dynamics. The estimators based on the EKF and 

UKF are used to estimate adhesion coefficient, slip ratio, 

and yaw rate effectively in dry, wet, greasy and extremely 

slippery track conditions. The performances of the UKF 

and EKF algorithms are assessed and compared with each 
other. The UKF estimator not only verified excellent 

performance in the normal operation of a railway vehicle 

on a normal track but equally depicted robustness in 

traction and braking modes of the vehicle in wet, oily, and 

extremely slippery track conditions. The validity of the 

estimator is also checked in the transition of adhesion 
conditions from dry to extremely slippery and vice-versa 

during the simulation. In the future, this approach will be 

implemented on Field Programmable Gate Arrays (FPGA) 

platform for real-time condition monitoring of wheelset 

dynamics to avoid the accidents and derailment of railway 

vehicle. 
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Abbreviations  

a and b  Semi-axis length of the contact 
patch 

B and D  Reduction factors 
𝑐  Contact shear stiffness coefficient 
𝐹𝑐 Centrifugal force 
𝐹𝑁  Normal force between the wheel 

and rail 
𝑘𝐴  Reduction factor in the adhesion 

area 
𝑘𝑆  Reduction factor in the slip area 
𝑀𝑡  Rail vehicle mass 
𝑛𝑖  Gear reduction ratio 
r  Wheel radius 
Rr and Rs  Rotor and stator resistance 
𝑆  Half gauge of track 
𝑇𝑚  Motor torque 
𝑇𝐿   Load torque 
𝑉  Longitudinal velocity 
𝑉𝑤𝑅   Longitudinal velocity of the right 

wheel 
𝑉𝑤𝐿   Longitudinal velocity of the left 

wheel 
𝑦  Lateral movement 
𝑦𝑑   Track irregularities in lateral 

direction 
ϵ  Gradient of tangential stress 
𝜅𝑤  Wheel conicity 
𝜓  Yaw angle 
𝜉  Total creepage between the wheel 

and rail 
𝜉𝑥   Longitudinal creepge 
𝜉𝑦  Lateral creepage 

𝜇𝑓  Friction coefficient 

𝜇0  Maximum friction coefficient 
𝜔𝑅   Angular velocity of the right wheel 
𝜔𝐿  Angular velocity of the left wheel 
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