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Abstract. The graph I'(R; o Ry) of the lexicographic product of two commutative rings Ry, R is
considered. It was shown that I'(R; o Ry) is connected and diam(I'(R; o Rp)) < 2. We get the several
expressions for finding the connectivity x(I'(R; o Ry)) when certain conditions are given.
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1 Introduction

We follow [3] for terminologies and notations of graph theory not defined here.

Let G be a simple undirected graph, where V(G) and E(G) denote the set of vertices and
the set of edges of G, respectively. For each vertex v € V(G), the neighborhood Ng(v) of v is
defined as the set of all vertices adjacent to v and degg(v) = [Ng(v)] is the degree of v. The
number 6(G) = min{deg(v) | v € V(G)} is the minimum degree of G. Let u, v be vertices in
a graph G. The distance between u and v is the length of a shortest path between them in G
and is denoted by d(u, v). If G is disconnected and u, v are in different components we say
d(u, v) = co. Let v be a vertex of a graph G. The eccentricity of v is

e(v) = max{d(u,v)|uecV(G)}.

The diameter of a graph G is defined as max{e(v)|v € V(G)} and is denoted by diam(G).
For an arbitrary subset S C V(G) we use G — S to denote the graph obtained by removing
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all vertices in S from G. For any connected graph G, if G — S is disconnected, then S is called
a vertex-cut. The connectivity of a graph G, denoted by «(G), is the minimum cardinality of a
set S C V(G) such that G — S is either disconnected or the trivial graph Kj. It is known that
k(G) < 4(G). If a graph G is disconnected, then we define x(G) as co. It is known that when
the underlying topology of an interconnection network is modeled by a graph G = (V,E),
where V represents the set of processors and E represents the set of communication links in
the network, «(G) is an important measurement for the fault tolerance of the network.
The lexicographic product G; o G of two graphs G; and G; is the graph having

V(Gl o Gz) = V(Gl) X V(Gz), and
E(G1 o Gz) = {(xl,yl)(xz,yz) | X1Xp € E(Gl) Or X1 = X2,Y1Y2 € E(Gz)}.

Note that in the sense of isomorphism the lexicographic product does not satisfies the com-
mutative law.
Clearly, G o Gy is connected if and only if G; is connected.

Theorem 1.1. [12, Theorem 1] Let Gy and Gy be two graphs. If Gy is non-trivial, non-complete and
connected, then k(Gy o Gp) = x(G1).|V(Gp)|.

The lexicographic product has generated a lot of interest mainly due to its various appli-
cations. According to [5], the lexicographic product of two graphs first was defined in [4].
Connectivity and super connectivity of lexicographic product of graphs have been studied
in [12] and [7], respectively. For more information about lexicographic product, see [6,9]
and [11,12].

In section 2, we deal with the lexicographic product of two commutative rings Ry, R, and
give their examples. We show that I'(R; o Ry) is connected and diam(I'(Ry o Ry)) < 2, and
then we find the expressions for finding x(I'(R; o Ry)) when certain conditions are given.

In section 3, we investigate the connectivity of special subgraphs of I'(R; o Ry).

2 Connectivity of I'(R; o Rp)

Let R be a commutative ring. An element a of R is called a zero-divisor of R if there exists
a non-zero element b in R such that ab = Og. Let Z(R) denote the set of all zero-divisors
of R. For a subset S of R, let S — {Og} be denoted S*. By the zero-divisor graph T'(R) of R
we mean the graph whose vertices are elements of Z(R), such that two distinct vertices x
and y are adjacent if and only if xy = Og. Furthermore, I'y(R) is a subgraph of I'(R) with
V(To(R)) = Z(R)"

By definition, I'(R) is connected. It was shown that I'j(R) is connected with diameter
less than or equal three. For more results and the history of this topic the reader is refereed
to [1,2] and [10].

Also, T'(R) is a graph with vertices all elements of R and two distinct elements x,y of R
are adjacent if and only if xy = Og. Clearly, T'y(R) is a subgraph of I'(R) which is a subgraph
of T(R).
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We define I'(R; o Ry) as a simple graph with V(I'(Ry o Rp)) = Z(R1 X Rp) and two distinct
vertices (x1,11) and (x2,2) are adjacent if and only if x1x, = Og, or x; = x7 and y1y» = Og,.

When divided by a positive integer m, the set of all integers with remainders forms a
commutative ring. This ring is called the ring of integers modulo m, and is denoted by Z,,.

Example 2.1. We take Ry = Z, and Ry = Z*(= Zy x Z3). For convenience, let Og, =0, x1 =1
in Ry, and let
Or, =(0,0), 11 =(1,0),y2=(0,1),y3 =(1,1)
in Rz. Then F(Rl) = K1 and F(Rz) = K3. So F(Rl) o F(Rz) = K3 and K(F(Rl) o F(Rz)) =2
To draw the graph T'(Rq o Ry), first complete the following table:

’ ‘ Elements of Ry X R; ‘ Vertices of T(Rq o Rp) ‘ Degree ‘

(0R1/ ORz) (0R1/ ORz) 6
(x1,0g,) (x1,0Rr,) 6
(Ole ]/1) (ORl’ yl) 6
(x1, 1) (x1,y1) 6
(ORl’ yz) (Ole yZ) 6
(x1,y2) (x1,y2) 6
(Or,, y3) (Or,, y3) 6
(x1,y3) No -
| Total | 8 | 7 | 42 |

This table lists the vertices of I'(R1 o Ry) and its degrees. For example,

Nr(ryory) (X1, y2) = { (%1, 08,), (x1,41), (Or,, OR,), (Or,, Y1), (Or,, Y2), (OR,, Y3) },
So P(Rl o Rz) = K7 and K(F(Rl o RQ)) =6.
The following lemma holds by definition.

Lemma 2.2. Let Ry and Ry be commutative rings and (x,y) € Z(R1 X Ry).
1. If (x,y) € R} X R;, then

NF(RloRz)(xry)
= ({Or, } X R2) U (Nry(r,)(x) x R2)U({x} x {0, }) U ({x} X Nry(r,)(¥))-

2. If (x,y) € {Og, } X Ry, then
Nr(r,xRy) (0,¥) = Z(Rq X Ry).
3. If (x,y) € R} x {Og, }, then
Nr(RyoRy) (%,¥) = ({O0R, } X R2) U (Nry(ry) (%) X R2) U ({x} x Ry).
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Corollary 2.3. Let Ry and Ry be commutative rings and (x,y) € Z(Rq X Rp).

1. If (x,y) € R} x R, then

degr(r,ory) (X, ¥) = |Ra| + degr(r,)(x) - [Ra| + 1 + degry(r,) ()
2. If (x,y) € {Og, } X Ry, then
degr(Rlsz)(x,y) = |Z(Ry x Rp)[ — 1.
3. If (x,y) € R} x {Og,}, then
degr(r, xRry) (X,¥) = 2|Ra| + |Ra| - degr(r,) (x).

Proof. This is established by Lemma 2.2. O

For every x; € R}, let V(I'(Ry,2)) be the set of all vertices (x;,y;) of V(I'(Ry o Rp)) for all
Yj € Ro. It is easy to check that if x? = Og,, then T(Ry5) = K, where r = |R|. Let x7 # Og,. If
X; g Z(Rl), then F(inz) = r(Rz) If X; € Z(Rl), then r(inz) = T(Rz)

Also, for every y; € Ry, let V(I'(Ryy,)) be the set of all vertices (Og,, ;) of V(I'(R1 o Rp)).
Therefore, V(I'(Ry 0 R2)) = Uy,er: (V(I'(Rx2))) U V(I'(Ryy,)).-

Theorem 2.4. Let Ry and Ry be two commutative rings. Then T'(Rq o Ry) is connected and diam (I’ (R o
Ry)) <2.

Proof. All vertices of I'(Ryy,) are adjacent to all vertices of I'(Ry,2). Hence diam(I'(Ry o Rp)) <
2. O

In the rest, we consider Ry = {Ogr,, X1, -+, X, } and Ry = {Or,, ¥1, -, Ym }-

Theorem 2.5. Let Ry and Ry be two commutative rings with Z(R1) = {Og, }, |[R1| >3, and Z(R,) =
{Or, }. Then k(T (R 0 Rp)) = |Ry|.

Proof. There is no path between (x;,0g,) and (x¢,0r,) fori # tinT'(Rj o Rp) — F(Rly],). Hence
K(I'(R10Rp)) < [V(I(Ryy,))| = |Ral.

Now, let S be a vertex-cut of I'(Ry o Rp). Then I'(R; o Rp) — S has at least two distinct
components, say I'; and T'p. Let (x,,y;,) € I'1 and (xc,y4) € 2. Therefore, x,xc # Og,, that
is, x;, # Og, and x¢ # Og,. If x, = x,, then y, = y; = Og,, a contradiction. So x; # x, and
S =T(Ryy,). Therefore x(I'(Rq o Rz)) = |Ro|.

[

Let in the Theorem 2.5, Z(R;) # {Og,}. By using notations of the proof of theorem, if
Xq = X, then y,y; # Og,. By [12], there are x; = x(I'(Ry)) internally disjoint paths Py, - - -, Py,
between y;, and y,; in T'(Ry). By choosing one vertex y; of each path P; for t € Z,, we get S =
{(xa,y)} UT(Ryy,) where [S| =17 + [Rz|. Also, for the case that x, 7 xc we get S =T'(Ryy,).
Hence, we have the following result.
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Corollary 2.6. Let Ry be a commutative ring with Z(R1) = {Og, } and |R1| > 3. Then
k(T'(RyoRy)) = |Ry|,
for every commutative ring Rp.

Theorem 2.7. Let Ry be a commutative ring with Z(Ry) = {Og, }. The followings hold for every
commutative ring Ry.

1. If|R1] =1, then k(T(Ry o Rp)) =|Z(Rp)| — 1.
2. If |Ry| =2and Z(Ry) = {Og, } then k(T (R1 0 Rp)) = |Ry]|.
3. If|R1| =2 and |Z(R2)| > 2 then K(F(Rl ORz)) = |R2| + K».

Proof. 1. If Ry = {Og, }, then I'(Ry o Ry) = K, where r = |Z(R;)|. Hence x(I'(R1 o Ry)) =
r—1.

2. Let Ry = {ORl,xl}. Then, V(F(Rl o Rz)) = {(ORyyj)/(ORyORz)/ (X1,0R2)’y]' € Rz} and
I'(R1 0 Rp) = K42, as needed.

3. By similar argument just pirior to Corollary 2.6, we get k(I'(R1 o Rp)) = |Ra| + x2.
[

Note that, if Z(R) = R then in general R is not the null ring. Take R = {0,2,4,6} where

addition is addition mod 8 and multiplication is multiplication mod 8. Then R is a ring with
Z(R)=R.

Theorem 2.8. Let Ry be a commutative rings with Z(R1) = Ry. Then
K(T(Ry 0 Ry)) = [Ra|(k(T'(R1)),

for every commutative ring Ry.
Furthermore, if T(Ry) is complete, then k(T (Ry o Rp)) = n|Ra| + x(T'(Ry)).

Proof. Since Z(Rq) = Ry, we get [(Ry o Rp) 2T (Rq) o T'(Ry). If ['(Ry) is non-complete, then

the result holds by using Theorem 1.1.

Assume that I'(Ry) = K,+1. We can consider I'(R; o Ry) as a complete graph with vertices

I'(R1y;) UT'(Ry;2) for every x; € Ry. By definition, S = UL, T(Ry2) UT (Ray;) U {(x1,y¢)} for

t € Z,(1(r,)) is a minimum vertex-cut in I'(Ry © Rp). Thus, x(T'(Rq 0 R2)) = n[R,| + x(T(Ry)).
]

Theorem 2.9. Let Ry and Ry be two commutative rings with Z(Ry) # Ry and Z(Ry) # {Og, }. Then
k(T(R1oRy)) = |Ry|.
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Proof. By hypothesis there exists x; € R; — Z(R1). There is no path between (x;,y;) and (xt,y;)
inI'(Ry o Ry) — I'(Ryy,) for x; € Z(R1)* and y; € Z(Rz). Hence, x(I'(R1 o Rz)) < [Ra|.

Now, let S be a vertex-cut of T'(Ry o Rp). Assume that I'; and T'; are distinct components of
I'(RioRy) — S. Let (x4,yp) € T'1 and (x¢,y4) € I'. Therefore x,xc # {Og, }. Let x4, xc € Z(Rq)*
and A = {x], -+, x;, } be aminimum vertex-cut in T'(Ry) where x(I'(Ry)) = x;. Clearly, Og, €
A. There are two cases:

Case 1. Let x; # x.. By [12] there are «; internally disjoint paths Py, - - -, P, between x, and
xc in T(Ry). Choose one vertex x; of each path P; for t € Zy,. Then S = {(xt,y;)|y; € Ra}
where |S| = x1.|Ry|.

Case 2. Let x; = x.. Then y,y,; # Og,. There are two subcases:

Subcase 1. Let Z(Ry) = {Og, }. Then

S = {(xi,y), (xa,0r,)|x; € Np(g,)(xa),yj € Ra}

with [S| = degr(r,)(%a):|Ra| + 1> 6(T'(Ry)).|Ro| +1 > x1.[Ra| + 1.
Subcase 2. Let Z(Ry) # {Or, }. If y, & Z(R2)* or yz & Z(R2)*, then S is same as Subcase 1.
Let y4,y4 € Z(R2)*. By [12] there are x; = x(I'(Ry)) internally disjoint paths Q1, -+, Qx,
between y;, and y,; in T'(R;). Choose one vertex y, of each path Q, for u € Z,. Then, S =
{(xi,y), (Xa,yu)|xi € Nr(r,)(xa),yj € Ro} with [S| = degr(r,)(xa)-|Rz| 4 x2 > 6(I'(R1)).|Ra| +
Ko > K1.|R2| + K>.
Furthermore, in the case that x, ¢ Z(Ry)" or x, ¢ Z(R;)" we get S =T (Ryy,).
Hence, in any case |S| > |Ry|, as needed. O

3 Connectivitiy of the subgraphs of I'(R; o Ry)

In this section, we investigate the connectivity of subgraphs of I'(R; o Ry) for two com-
mutative rings Rj and Ry. It is easy to check that the subgraph of I'(R; o Ry) whose vertices
are elements of Z(R1)* x Z(Ry)* is equivalent to I'g(R1) o I'o(Ry).

Definition 1. Let R; and R; be two commutative rings.

The subgraph of I'(R; o Ry) whose vertices are elements of Z(R1)* x R; is denoted by
F01 (Rl (@] R2)

Also, the subgraph of I'(R; o Ry) whose vertices are elements of Ry x Z(Rp)* is denoted
by r()z(Rl o Rz).
Example 3.1. Let Ry = Z4 and Ry = Zg. Clearly, To(Rq1) = Ky, To(Rp) = Ky p. Imagin x = 2.
Thus

V(To1(Ry 0 Ra)) = {(x,y)|y € Ra}.

Now, x* = Og, implies that To(Ry) o To(Ra) = K3, Tp1(Ry o Ry) = Kg and x(Tp1(Ry 0 Ry)) =7.

By definition, if Z(R;) = {Og, } then T'p;(R; o Ry) is null. Consider Example 2.1.
Theorem 3.2. Let Ry and Ry be two commutative rings with Z(Ry) # {Og, }. Then x(I'o1(Rq o
Rz)) = x(T'o(R1))[Ra|.
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Proof. Let I'g(R1) be complete. Then I'g;(R; © Ry) is a complete graph with vertices T'(Ry2)
where each I'(Ry2) is isomorphic to I'(Ry). Hence x(Tp1 (Ry o Rz)) = x(To(R1))|Ral.

Now, let T'g(R;) be non-complete. By [1], To(R7) is connected with diam(T'y(R1)) < 3. The
result holds by using Theorem 1.1. O

Example 3.3. Let Ry = Z, and Ry = Zg. Let y1 = 2,yo = 3,y3 = 4 in Zg. Thus
V(T2(R1 o Rp)) = {(x,yj)|x € Ry,j € Z3}.
So, To2(Ry © Ry) = Kg and k(Tp2(Ry 0 Rp)) =5.

By definition, if Z(R;) = {Og, } then I'pz(R1 © Ry) is null.
Let Z(Ry) # {Or,}. Now, by I'a(Ry o Ry) 2 T'(Ry) o I'p(Ry) and using Theorem 1.1, we
have the following result.

Theorem 3.4. Let Ry and Ry be two commutative rings with Z(Ry) # {Or,}. Then x(Tp2(Ry o
Ro)) =x(I'(R1))|Z(Rz)"|.
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