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Article info: 
A hydraulically driven mold oscillator challenges estimating the dynamic 

state variables precisely. Significantly, the additional stiffness effect of 

hydraulic oil is variable according to operating conditions, and it is hard to 

formulate it as a mathematical expression. This study investigates the 

dynamic characteristics of a mold oscillator operated by two hydraulic 

cylinders with other springs and dampers to determine the non-linear effect 

and estimate exact dynamic state variables to improve the accuracy control. 

The mold oscillator is excited in either step oscillation or sine-sweeping 

oscillation to measure its dynamic behaviors, including mold displacement 

and hydraulic cylinder pressure. Due to non-linear properties, the dynamic 

behavior change according to excitation conditions during sine-sweeping 

oscillation. Primarily, peak frequencies around 50 Hz are found from 

experimental pressure-displacement data in the frequency domain. To 

identify the oscillating mechanisms, equivalent 1-DOF and 2-DOF mass-

damper-spring models for the mold oscillator are established. The 

fundamental system property is derived by experiment and a finite element 

multi-body dynamics model. In addition, inverse dynamics and numerical 

analysis are applied to derive the unknown force from the hydraulic servo 

system and structural characteristics. The unknown force is related to a 

friction problem and an elastic deflection by relative components near the 

mold. For high accuracy control, the unknown force model by an additional 

mass-spring model that causes high-frequency vibrations at 49, 48, 47, 46, 

or 45 Hz is suggested to formulate the equation of motion with the 

additional vibrations without any arbitrary modeling process. 
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1. Introduction

Many applications for lifting a heavy mold 

oscillator, maintaining constant continuous 

casting speed and suppling homogeneous 

ingot steel to a rolling strand, have been 

tried [1-6]. However, hydraulic servo 

systems have been preferred because of their 

excellent stiffness characteristics and rapid 

response to speed or direction changes [7]. 

However, the hydraulic servo may leak 

operating oil, cause environmental 
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problems [8], and cannot be easily modified 

due to its non-linear input responses. The 

nonlinearity is caused primarily by the servo 

valve and the hydraulic cylinder, including 

the orifice, hydraulic cylinder damping, 

stiffness, and friction. [9] In previous work 

on mold oscillation, experimental research 

was conducted to obtain a detailed design. 

For example, the relationship between an 

oscillating signal and lubrication 

consumption was calculated according to 

friction between mold and ingot steel [10, 

11]. In order to minimize the consequences 

of non-linear responses, various linearized 

models for the hydraulic servo system have 

been developed for small instruments. 

However, research about the mold oscillating 

mechanism has not been published because the 

information is proprietary. In addition, structural 

analysis, including fitting the beam model 

parameters to match the actual resonance 

frequencies exhibited by thin and thick slab 

casting mold oscillators [12], a novel type of 

mold oscillator instead of a hydraulic driven 

system due to its complex and maintenance 

problem [13], development of an intelligent PID 

(i-PID) controller for position control of a non-

linear electro-hydraulic system [14], 

development of a new electro-hydraulic power 

source based on pressure-controlled variable 

piston pump driven by a servo motor [15], have 

been considered to improve the accuracy control 

and the performance. Engineers triy to find good 

operating conditions in many steel factories by 

trial and error without having a basic design. 

Considering that the mold oscillation occurs at 

low frequency (0.83 ~ 6.67 Hz) and because the 

oscillating system is mounted on a stable base, 

the trial-and-error method often gives reasonable 

solutions. Another method establishes a proper 

transfer function near the operating point [16]. 

However, these methods give one solution 

among various solutions, not necessarily the best 

one. The system will not be estimated if design 

variables or operating conditions change. Such 

changes in conditions are expected in modern 

steel manufacturing in which high productivity 

and fast production processes are demanded; 

rapid casting is essential to meet these demands 

[17-19]. Mold oscillators should be checked in 

many ways, including an assessment of how 

dynamic characteristics depend on design 

variables to secure a stable system that is also 

fast [20-22]. 

Experimental data and a finite element (FE) 

multi-body dynamics model are used to establish 

equivalent 1-DOF and 2-DOF models and 

analyze the dynamic responses in the time and 

frequency domains. The difference between the 

experiment and the numerical solution is 

investigated to formulate the variable non-linear 

effect due to the hydraulic cylinder, which was 

not a concern in the previous work. Significantly, 

the dynamic responses to natural frequency ωnat 

and excitation frequency ωexc are primary 

frequencies. Based on the physical relationship 

between the primary frequencies, vibrations 

theories derive the connecting spring stiffness 

and damper between the mold and the ground 

and derive a mathematical expression from 

describing an unknown non-linear force. The 

primary concern of the present research is to 

control the system precisely 
 

2. Methods 

2.1. Analysis methodology with simplified mold 

oscillator model 

2.1.1. 1-DOF mold oscillator model 
 

Before modeling a system, experiment data, 

mold displacement, hydraulic cylinder pressure, 

and design variables according to various 

oscillating signals are corrected from the 

monitoring system. The 1-DOF mass-spring-

damper system is a simple model representing 

the mold oscillator, consisting of 2 double-acting 

cylinders (Fig. 1).  
 

 

Fig. 1. Mold oscillator. 
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The mass, damping ratio, and stiffness of the 

model (Table 1) were derived from the pressure 

difference in the cylinder when a step signal was 

applied. These values were used to calculate the 

force equilibrium between the moving weight, 

the leaf spring, and the hydraulic cylinder (Eq. 

(1)):  

( )leaf add leaf leaf pressuremy cy k k y k y F mg+ + + − = −

(1) 

where m is the mass of the mold [kg], c is an 

equivalent damping coefficient [N/m-s], kleaf is a 

leaf spring stiffness [N/m], kadd is a hydraulic 

cylinder stiffness [N/m], g is gravity acceleration 

[m/s2], Fpressure is a hydraulic cylinder pressure 

force [N]. 

The mold’s numerical solution and experimental 

displacement show identical distributions to the 

system properties (Fig. 2).  

By using the equivalent 1-DOF model, the 

numerical solution and the experiment are not 

the same when a sweeping signal is applied (Fig. 

3). In other words, If Fpressure, the experiment data 

from the monitoring system, is applied to the 

equation of motion, the dynamic response, such 

as the displacement, cannot be represented as a 

sine-sweeping signal. 

Table 1. Mold oscillator configuration. 

Quantity Value 

M : Mass  33 ton 

ζ : Damping ratio 0.3 

K : Total stiffness 8,287,639 N/m 

Fig. 2. Comparison between the numerical solution 

and experiment about displacement with a step input 

signal. 

Fig. 3. Comparison between the numerical solution 

and experiment about displacement with a sweeping 

input signal. 

This difference means that the dynamic 

characteristic of the mold oscillator changes 

according to operating conditions; i.e., an 

unknown non-linear force term α must be 

introduced to enable Eq. (1) to follow the 

oscillating input signal (Eq. (2)): 

( )

( )

leaf add leaf leaf pressure

leaf add leaf leaf pressure

my cy k k y k y F mg

my cy k k y k y F mg 

+ + + −  − ⎯⎯→

+ + + − = − +

(2) 

A combination of factors, including variations in 

stiffness and damping ratio, friction between the 

piston and the cylinder, operating fluid leakage, 

and structural characteristics, causes the 

unknown force. 

2.1.2. Dynamic analysis of experimental data 

about displacement and pressure 

A sweeping input signal was applied, and the 

dynamics response was converted to the 

frequency domain. Peak pressure force and 

displacement frequencies were related to 

excitation frequencies 1~7 Hz (Table 2). 

However, unlike the step input signal, high peak 

frequencies of 43~49 Hz were found in the 

displacement’s fast Fourier transform (FFT). 

Because ωexc is an excitation oscillation and the 

harmonic terms are local vibrations, these terms 

correspond to friction, stiffness, and damping 

ratio variation proportional to the excitation 

oscillation. The harmonics terms can be 

simplified as when f = 1 Hz. The harmonics are 

all 1 + 2n, n = 1; for f > 1 Hz, they are all nf, n = 

1 in pressure.  
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Table 2. FFT of the pressure and displacement. 

Also, all High frequencies = 50 – f in 

displacement. However, additional peak 

frequencies 43~49 Hz are not proportional to 

ωexc; all of these frequencies are (50 – ωexc) Hz. 

This relationship indicates that the structural 

characteristics of the support part or functional 

component are changed. 

2.1.3. Definition of the non-linear force 

The mold’s displacement, velocity, and 

acceleration (Fig. 4) were derived by direct 

numerical integration using the Park stiffly 

stable method based on the experimental mold 

displacement. [23] Unlike the velocity and 

acceleration of a sine function, the velocity and 

acceleration of the mold include beat phenomena 

(Section 4). 

By substituting this motion into Eq. (3), the 

unknown force α can be identified as a sine 

distribution (Fig. 5). To formulate a 

mathematical model, the equation of motion is 

modified with a function with the same 

distribution as α. 

(3) 

Fig. 4. Dynamic behavior of the mold oscillator with 

1 Hz excitation. 

Fig. 5. Unknown force terms at different excitation 

frequencies. 

2.1.4. The non-linear force distribution 

according excitation conditions 

This section separates the unknown force into 

the excitation conditions and defining a 

summation of a Fourier series and a beat 

function to represent α (Fig. 6).  

( )leaf add leaf leaf pressuremy cy k k y k y F mg + + + − = − +
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Excitation 

frequency 

[Hz] 

Pressure 

Excitation and harmonic 

terms [Hz] 

High 

[Hz] 

1 1/3/5/7/9/11∙∙∙  ∙ 

2 2/4/6/8/10/12 ∙∙∙  ∙ 

3 3/6/9/12/15/18 ∙∙∙  ∙ 

4 4/8/12/16/20/24 ∙∙∙  ∙ 

5 5/10/15/20/25/30 ∙∙∙ ∙ 

6 6/12/18/24/30/36 ∙∙∙ ∙ 

7 7/14/21/28/35/42 ∙∙∙ ∙ 

Excitation 

frequency 

[Hz] 

Displacement 

Excitation and harmonic 

terms [Hz] 
High 

1 1/3/5/7/9/11∙∙∙  49 

2 2/4/6/8/10/12 ∙∙∙  48 

3 3/6/9/12/15/18 ∙∙∙  47 

4 4/8/12/16/20/24 ∙∙∙  46 

5 5/10/15/20/25/30 ∙∙∙ 45 

6 6/12/18/24/30/36 ∙∙∙ 44 

7 7/14/21/28/35/42 ∙∙∙ 43 
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Fig. 6. FFT of the non-linear force α of the beat 

function and experimental data. 

Due to the time step limitation in the experiment, 

0.01 s, experimental α cannot be shown over 50 

Hz. The Fourier series is used to represent the 

center line of α. The Fourier function has 1 ≤ ωexc 

≤ 6 Hz and harmonic terms (Table 3). The 

center value αo is steady at all ωexc. This value 

corresponds to 1.0355 tons. The stroke increased 

gradually over 1 ≤ ωexc ≤ 4 Hz but increased and 

decreased dramatically at ωexc = 5 Hz and ωexc = 

6 Hz. This distribution is correlated to the 

excitation conditions and the structural 

characteristic. In practice, the mold oscillator has 

a second torsional natural mode along its 

longitudinal axis, and this mode imparts an 

unbalanced force on left and right hydraulic 

cylinders at ωexc ~ 5 Hz. 

Table 3. Fourier series for the unknown force with 

different excitation frequencies. 

Frequency 

[Hz] 

o 1 1

2 2

cos( ) sin( )

cos(2 ) sin(2 )

cos( ) sin( )n n

f a a t b t

a t b t

a n t b n t

 

 

 

= + +

+ +

+ +

 

ao [N] max(f)-min(f)[N] ω [Hz] 

1 -10135.53 4191.30 1 

2 -10199.31 7190.19 2 

3 -10159.95 10345.57 3 

4 -10198.77 11968.35 4 

5 -10255.62 59333.70 5 

6 -10252.26 5301.57 6 

Except for the Fourier series force, the center 

line of α is 0. The beat function varied with ωexc 

(Table 4); the amplitude of the beat function was 

proportional to the excitation frequency. The 

beat function showed two peak frequencies 

corresponding to (50 ± ωexc) Hz. These results 

indicate that frequency analysis, including all 

design variables, should be considered. The 

following Section will analyze this phenomenon 

in detail. The mathematical expression and the 

experiment data about unknown force α were 

similar in frequency and amplitude but differed 

slightly in phase (Fig. 7); this difference can be 

corrected mathematically. 

Table 4. Beat function for the unknown force with 

different excitation frequency. 

Frequency 

[Hz] 

( )
o cos cos

2 2
beat

t
f F t

   + 
=        

Fo[N] ω [Hz] δ [Hz] 

1 75236.49 97.94 2 

2 138166.37 95.92 4 

3 207682.21 94 6 

4 302004.08 91.9 8 

5 352677.60 89.9 10 

6 400450.39 88.12 12 

Fig. 7. Comparison between the experimental force α 

and the mathematical expression. 

1.2 1.4 1.6 1.8 2
-1

0

1
x 10

5

Time (s)

F
o
rc

e
 (

N
)

Frequency = 1Hz

Experimental 

Mathematical 

18.2 18.4 18.6 18.8
-2

0

2
x 10

5

Time (s)

F
o
rc

e
 (

N
)

Frequency = 2Hz

34.6 34.8 35 35.2 35.4
-5

0

5
x 10

5

Time (s)

F
o
rc

e
 (

N
)

Frequency = 3Hz

49.2 49.4 49.6 49.8
-5

0

5
x 10

5

Time (s)

F
o
rc

e
 (

N
)

Frequency = 4Hz

62.2 62.4 62.6 62.8
-5

0

5
x 10

5

Time (s)

F
o
rc

e
 (

N
)

Frequency = 5Hz

81.2 81.4 81.6 81.8
-5

0

5
x 10

5

Time (s)

F
o
rc

e
 (

N
)

Frequency = 6Hz



JCARME                                                         Y. H. Park                                                       Vol. 13, No. 2  

 

234 

 

2.2. Analysis methodology with the modified 

mathematical model 

2.2.1. The Natural characteristic of the mold 

oscillator 

 

The mold oscillator includes four leaf springs at 

different locations (Fig. 8). In the 1-DOF 

equivalent model, all elastic components are 

regarded as one spring stiffness and are 

combined into one stiffness value. However, the 

system has different natural modes due to 

structural characteristics. A FE multi-body 

dynamics model is made to verify this fact, and 

the relationship between input and output 

experimental data is verified. The distribution of 

ωnat produced by this model includes many ωnat 

near 47 Hz (Fig. 9).  

Generally, natural frequencies that are very close 

are generated by the same component, here 

probably the leaf spring. The leaf spring behaves 

as a beam and has several natural modes near 

47 Hz in practice. The inertia of the moving 

weight and the mold influences this ωnat. 

 

 
Fig. 8. Design of the mold oscillator, including leaf 

springs. 
 

 
Fig. 9. Natural frequency distribution of the mold 

oscillator. 

 

The oscillating mechanism according to control 

processes should be considered. The pressure 

and displacement are input and output signals, 

respectively. The output signal includes 

information about the input, but the peak 

frequencies of the output at 49, 48, 47, 46, 45, 

44, and 43 Hz are not dependent on the input; 

i.e., they must be caused by some other source. 

In the 1-DOF equivalent model, the additional 

peak frequencies 43~49 Hz, except for ωnat and 

ωexc, cannot be represented. Mechanical system 

modeling expands the model to a 2-DOF mass-

damper-spring system that includes the 

structural characteristic. 

 

2.2.2. 2-DOF mold oscillator model 

 

The 2-DOF mass-damper-spring system for 

analysis of the beat phenomenon includes 

moving weight m1 and the support m2 of the 

moving weight, as shown in Fig. 10. The leaf 

spring is located between m1 and m2 and changes 

according to the excitation conditions. Without 

deflection of m2, the additional peak frequencies 

at 49, 48, 47, 46, 45, 44, and 43 Hz cannot be 

acquired (Section 3.2). Eq. (4) is the equation of 

the 2-DOF model. 
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Fig. 10. Diagram of the modified mold oscillator 

model, including internal variable stiffness. 
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2.2.3. The leaf spring’s stiffness variation 

according to excitation conditions 

 

The additional peak frequency near 50 Hz 

changed according to excitation conditions in the 

experimental data. This phenomenon is that 

stiffness varies. Mechanical system modeling 

defines the mass m1 and m2 as 33 tons and 7 tons 

using the FE multi-body dynamics model. Even 

though peak frequencies exist during 1 Hz 

excitation locally, 1 Hz and 49 Hz frequencies 

are selected to check general dynamic behaviors. 

The beat period is 0.5 s (= 2 Hz), so the system 

must have 49-Hz and 51-Hz natural frequencies. 

To include 49-Hz vibration on m1, m1, and m2 are 

given 51-Hz and 49-Hz ωnat, respectively. In this 

problem, kleaf and k2 are design variables. The 

stiffness distribution varied with the excitation 

conditions (Table 5). As ωexc increased, kleaf 

increased, and k2 decreased. This result is due to 

the leaf spring’s natural mode and the adjoining 

stiffness, which consists of the damping ratio 

and the stiffness of the hydraulic cylinder. 
 

3. Results and discussion 

3.1. Dynamic analysis using the 1-DOF mold 

oscillator model considering the non-linear 

force 
 

Numerical analysis simulated the 1-DOF model 

with external force, including α. Simulations 

considered a sine sweeping oscillation with a = 

2 mm and 1 ≤ ωnat ≤ 7 Hz. The numerical 

solution and the experimental data agreed well, 

except for a phase difference (Fig. 11), which is 

irrelevant in this analysis. The FFT (Fig. 12) of 

the displacement and pressure data reveal a 1st 

ωnat = 2.499 Hz in the pressure FFT. The natural 

frequency is the y-vertical translational mode. 
 

Table 5. Leaf spring stiffness kleaf and internal 

deformation stiffness k2 according to excitation 

frequency. 

Frequency 

[Hz] 

k1 

[N/m] 

kleaf 

[N/m] 

k2 

[N/m] 

1 

3,300,000,000 

70,815,413.66 680,000,000 

2 120,815,413.7 600,000,000 

3 175,815,413.7 540,000,000 
4 230,815,413.7 470,000,000 

5 290,815,413.7 410,000,000 
6 350,815,413.7 340,000,000 

 
Fig. 11. Comparison between the model and 

experiment about displacement and external force. 

 

 
Fig. 12. FFT of the displacement and external force. 

Time (s) 

Time (s) 
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However, the 1-DOF model does not generate 

beats at 49, 48, 47, 46, 45, 44, and 43 Hz. 

According to this result, finding a suitable design 

using a detailed system, such as increases in the 

degree of freedom and mathematical expression 

for environmental conditions, is essential. 

3.2. Dynamic analysis using the 2-DOF mold 

oscillator model considering the leaf spring’s 

stiffness variation 

Numerical analysis acquired the dynamic 

behavior of the time-frequency domain by using 

the 2-DOF model. Simulation conditions are the 

same as for the 1-DOF model. The numerical 

response and the experimental data are 

compared after the application of ωexc = 1 Hz 

(Fig. 13) and ωexc = 6 Hz (Fig. 14).  

The simulated dynamic behavior of m1 is similar 

to the experimental measurements. The phase 

difference between Moving weight and 

experiment data is input forcibly to show their 

similarity in detail. Additional peak frequency 

pairs are observed at 49 and 51 Hz, 48 and 52 

Hz, 47 and 53 Hz, 46 and 54 Hz, 45 and 55 Hz, 

and 44 and 56 Hz (Fig. 15). However, the 

external force on the 2-DOF model is much 

higher than the experimental pressure force.  

Fig. 13. Dynamic behavior comparison between 2-

DOF model and experiment with 1 Hz. 

Fig. 14. Dynamic behavior comparison between 2-

DOF model and experiment with 2 Hz. 

Fig. 15. FFT of dynamic behaviors with 1 Hz. 
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This difference occurred because m1 and m2 are 

chosen arbitrarily, so the stiffness is too high to 

fit target ωnat; i.e., design variables should be 

adjusted to have same external force as the 

experimental force. Finally, This mathematical 

equation can conclude the mold oscillation as the 

summation of the (dominant) ωexc; x1 and local 

vibrations; x2 (Fig. 16). The local vibrations, x2, 

have weaker amplitudes than does dominant 

ωexc; x1. However, the local vibrations still 

happen in actual operation. When the local 

vibrations correspond to arbitrary natural modes 

of the mold oscillator, failure or quality defect, 

such as mold oscillation marks, can happen 

without warning; therefore, the system must be 

designed to minimize or change the local 

vibrations. 

4. Conclusions

In this paper, the non-linear effect of the 

hydraulic cylinder on the mold oscillator is 

investigated numerically. The 1-DOF and 2-

DOF mass-damper-spring models are simulated 

as with the experiment. To validate the model, 

the monitoring system measured the mold 

displacement and the hydraulic cylinder pressure 

with step and sine-sweeping excitation. The non-

linear force is expressed as a summation of the 

Fourier series and the beat function using inverse 

dynamics to calculate velocity and acceleration 

from the displacement data. A comparison of the 

experiment and numerical solution and 

mathematical formulation of the non-linear 

effect indicates how to improve the accuracy 

control of the mold oscillator by using the 

present research. The study of the mold 

oscillator with different operating conditions 

indicates the following results: 

(1) The unknown non-linear force α is a bulk

variable that includes the effects of friction,

stiffness variation, and various natural modes of

the leaf spring effect that the FE multi-body

dynamics model cannot demonstrate. Therefore,

a mathematical model for control needs to apply

α based on the operating condition to estimate

the mold oscillator’s status precisely.

(2) The beat period depends on the oscillating

frequency and is presented as two peak

frequencies around 50 Hz.

Fig. 16. Summation of global and local vibration. 

(3) The modified mathematical model can give a

basic guideline for the mold oscillator to

estimate dynamic characteristics. However, the

fact that the dynamic characteristic of the

hydraulic servo system is sensitive to the

oscillating condition means that our model

should be used only in restricted conditions. In

the future, Multi-Domain Modeling will

combine our mechanical model with a linearized

hydraulic servo system and analyze the

sensitivity of the combination to design variable

variation and design modification.
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