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Article info: 

Microbubbles are used in ultrasound imaging, targeted drug delivery, 

destruction of cancerous tissues, etc. On the other hand, the demographic 

behaviors of small bubbles under the influence of Ultrasound have not been 

fully detected or studied. This study investigates the effect of the radial 

distribution of Sonazoid microbubbles on frequency response.  It is shown that 

the optimal subharmonic response is possible by controlling the size 

distribution. For this reason, the numerical simulation of the dynamic behavior 

of a coated microbubble is performed using MATLAB coding and the modified 

Rayleigh-Plesset equation. The Gaussian distribution is then applied, and the 

frequency response is investigated. It was shown that at a constant excitation 

pressure of 0.4 MPa and a standard deviation of 0.2, with increasing mean 

radius, the fundamental response increases. The subharmonic response 

increases reaches a peak value and decreases. This peak value occurs for 

frequencies of 4,6, and 8 MHz in the mean radius of 0.8, 1 and 1.6 μm. By 

increasing the frequency of excitation, it is transferred to a smaller mean radius. 

It is also observed that the fundamental and subharmonic responses are 

amplified by increasing the excitation pressure. Studies show that the optimal 

subharmonic response can be achieved for various applications by controlling 

the size distribution of microbubbles. 
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1. Introduction

During the past years, encapsulated 

microbubbles have been used in Ultrasound 

imaging and therapy. Due to the difference in 

acoustic impedance, these microbubbles cause 

the scattering and reflection of ultrasound waves 

sent from  the targeted place.  Blood is a poor 

reflector of ultrasound, therefore, to improve 

these properties, microbubbles in micron size are 

injected intravenously into the blood flow.  

Microbubble contrast agents (1 to 10 μm) are 

stabilized with a shell (lipid or albumin). 

Rayleigh-Plesset (RP) equation is used to 

simulate the radial behavior of a free bubble. 

However, this equation changes for the 

encapsulated microbubble that includes the 

shell. 

De Jong et al. [1] did a different study on the RP 

equation and investigated the effect of the shell 

on the radial behavior of the bubble and 

proposed two parameters, the shell elasticity 
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parameter (𝑆𝑝) and the shell friction (𝑆𝑓) to 

correct it. By presenting a theoretical model for 

the radial behavior of an encapsulated 

microbubble in a Newtonian fluid, Church [2] 

found that the resonance frequency of the 

microbubble increases with the addition of a 

shell and increases the rigidity of the 

microbubble [3, 4]. Hoff et al. [5] obtained a new 

model for the size changes of an encapsulated 

microbubble with a thin shell thickness, which 

predicted the acoustic scattering caused by the 

radial oscillation of the bubble. Chatterjee et al. 

[6] proposed the simplest Newtonian model for 

the enclosed microbubble shell. Shankar et al. 

[7] showed that the threshold pressure value for 

subharmonic onset depends on the actual 

damping value. Finally, Sarkar et al. [8] 

investigated the scattering responses by 

presenting a viscoelastic interface model for a 

microbubble enclosed by a thin shell. 

Marmottant et al. [9] proposed a model that 

simulates the nonlinear behavior of an 

encapsulated microbubble at high excitation 

pressure by considering three different states for 

bubble surface tension. The investigation of 

Forsberg et al. [10, 11] showed that the 

subharmonic response significantly depends on 

the excitation and hydrostatic pressure 

amplitude. The advantages of subharmonic 

response, which is a microbubble contrast agent, 

were investigated by Shankar et al. [12]. Adam 

et al. [13] numerically investigated the effect of 

ambient pressure on the acoustic scattering of 

Optison. The subharmonic response of a 

microbubble contrast agent as a function of 

ambient pressure was investigated 

experimentally by Andersen and Jensen [14].  By 

investigating the effects of pressure and 

frequency, Sarkar et al. [15] achieved a critical 

frequency ratio with peak subharmonic 

response. The studies of Forsberg et al. [16] 

showed that there is a correlation between the 

amplitude of the subharmonic component and 

the hydrostatic pressure in the growth phase of 

the subharmonic generation. 

Microbubbles are available in imaging 

applications in different radial sizes, and the size 

of the microbubble radius is an essential factor 

in the microbubble frequency response. 

Overvelde et al. [17] experimented with the 

subharmonic behavior of phospholipid 

microbubbles of various sizes. They also studied 

the subharmonic threshold using the Marmottant 

model, and the results showed that at low 

pressures and a moving frequency twice the 

frequency of the bubble intensification, the 

subharmonic response occurred. Moreover, they 

showed that the change in bubble shell elasticity 

as a function of bubble radius increases the 

subharmonic behavior of microbubbles. Sun et 

al. [18] addressed the dependence of the ultra-

harmonic response and the overpressure using 

experimental and theoretical measurements. 

They also examined the relationship between 

subharmonic and ultra-harmonic responses to 

excitation frequency and pressure amplitude. 

They concluded that for microbubbles with size 

distribution, the subharmonic and ultra-

harmonic responses could be reduced or 

increased by increasing the ambient pressure and 

excitation frequency. The strength of these 

responses was proportional to the excitation 

pressure amplitude. Base and Wheatly [19] 

obtained the radial distribution of the ultrasound 

contrast agents with the ST68-PFC Surfactant 

shell, studied the frequency response, and found 

that the subharmonic and ultra-harmonic 

responses Increased with increasing excitation 

pressure. Peter et al. [20] examined the 

subharmonic response of phospholipid 

microbubbles (such as SonoVue) using the 

Marmottant model. They found that 

subharmonic components and "compression-

only" behavior are observed by applying 

ambient pressure. Moreover, the increase of the 

sub-harmonic amplitude is a function of the 

ambient pressure. 

Lotsberg et al. [21] investigated the nonlinear 

emission of the encapsulated bubble 

experimentally and presented the obtained 

results with an emphasis on the subharmonic 

emission. They stimulated clouds of bubbles 

with a frequency of 3.5 to 4 MHz and observed 

that the subharmonic component increases with 

excitation pressure cube in the range of 50 to 100 

kPa. Zheng and Shandas [22] defined a modified 

model of the Rayleigh-Plesset Equation. 

Moreover, they investigated the frequency 

response of the radial distribution of Levovist 

and ST68 microbubbles experimentally and 
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theoretically. Moreover, they optimized the 

excitation pressure with a radius for 

subharmonic, ultra-harmonic, and  second-

harmonic responses. Numerical investigation of 

the characteristics of nonlinear acoustic emission 

from a coated bubble was done by Zheng et al. 

[23]. They showed that bubble size has a 

significant effect on the type of bubble acoustic 

emission. Zheng et al. [24] mathematically 

investigated the effect of the size distribution of 

bubbles on the propagation of acoustic waves. 

Newsome et al. [25] found that by increasing the 

diameter of the microbubbles from 1 to 4 

micrometers, the superharmonic response 

decreases. Haghi et al. [26] Investigated the 

nonlinear behavior of a polydisperse 

microbubble cluster. They showed that the 

largest microbubbles could force smaller ones 

into period-doubling and subharmonic 

oscillations. Streeter et al. [27] performed 

perfusion and molecular imaging studies with 

microbubbles in sorted diameters of 1.1 ± 0.43 

μm and 3.3 ± 1.95 μm and unsorted state (0.9 ± 

0.45 μm) to investigate the effect of diameter of 

microbubbles of contrast agents on imaging 

sensitivity. They showed that tailoring size 

distributions improve imaging sensitivity over 

unsorted populations. 

Determining the size distribution of 

microbubbles in the liquid is essential for 

studying the multi-dispersion bubble system. 

The simplest method is to experimentally 

measure the bubble size distribution in the liquid 

and use a histogram. This method works very 

well in laboratory studies but is not applicable in 

engineering applications due to the associated 

costs. Also, measuring an accurate histogram 

becomes a complex task in some working 

conditions [28, 29]. By using mathematical 

functions such as Rayleigh [30] and lognormal 

[31] bubble size distributions, can be study a 

multi-scatter bubble system. Other mathematical 

functions such as Gaussian distribution have a 

much wider application than previous cases 

because there are two adjustable parameters in 

the Gaussian distribution. Gaussian distribution 

and its parameters are used in this study to 

investigate the distribution. 

Microbubbles are in different radii in 

applications (especially ultrasound imaging). So 

far, less attention has been paid to the radial 

distribution of microbubbles and their effects on 

the frequency response. In contrast, this subject 

is used in applications, especially ultrasound 

imaging. On the other hand, the demographic 

behaviors of small bubbles under the influence 

of Ultrasound have not been fully detected or 

studied. We show in this study that the optimal 

subharmonic response is possible by controlling 

the radial distribution. In this research, the 

modified RP equation is solved with the help of 

an ODE solver in MATLAB software. We 

discuss the effects of the radial distribution of 

microbubbles at different excitation pressures 

and frequencies on the frequency response. 

Finally, we show that the radial distribution of 

microbubbles can lead to different changes in the 

frequency response and the existence of a 

maximum value in the subharmonic response. 

Therefore, controlling the radial distribution of 

microbubbles can help improve imaging quality. 
 

2. Equations and validation 
 

If the microbubble in the liquid is excited by the 

ultrasound field and the excitation pressure is 

large enough, the bubble starts to oscillate. The 

microbubble oscillations cause radial changes, 

which the mathematical Equation can simulate. 

In this research, it is assumed that the bubble is 

always spherical during pressure fluctuations. 

The  equation governing the behavior of the 

encapsulated microbubble is based on the RP 

equation.  In these models, viscoelastic terms can 

be shown as γ(𝑅) and 𝜅𝑠(𝑅), the efficient 

surface tension and efficient dilatational 

viscosity, respectively. Added terms represent 

the contributions caused by viscoelastic stresses 

produced in the encapsulation. 
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3
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𝑃0 is the hydrostatic pressure, 𝑐 is sound speed, 

and 𝑝𝐴(𝑡) is the sinusoidal excitation pressure. 

Also, the initial conditions are (𝑡 = 0) = 𝑅0 and 

�̇�(𝑡 = 0) = 0. 

 

2.1. Marmottant model 

 

Marmottant et al. [9] provided a model for 

bubble radius oscillation in which surface 

tension has three different states: the buckling 

state ( 𝑅 ≤ 𝑅𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 ), the elastic state (𝛾(𝑅) =

𝜒(
𝐴

𝐴𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔
− 1)) and the rupture state. 

 

𝛾(𝑅)

=

{
 
 

 
 

0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,𝑅 ≤ 𝑅𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔,

𝜒 (
𝑅2

𝑅𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔
2 − 1) 𝑅𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 ≤ 𝑅 ≤ 𝑅𝑟𝑢𝑝𝑡𝑢𝑟𝑒

𝜎𝑤,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,𝑅 ≥ 𝑅𝑟𝑢𝑝𝑡𝑢𝑟𝑒

 

 

𝑎𝑛𝑑,𝜅𝑠(𝑅) = 𝜅𝑠(𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 

(2) 

 

It is supposed that 𝑅𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 = 𝑅0, and on the 

bubble surface, the pressure is in equilibrium. 

The modified RP equation for this model is 

defined as below. 
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3
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(3) 

 

2.2. Radius distribution 

 

The scattered pressure of a spherical 

microbubble at a distance r from the center can 

be expressed as follows [32, 33]. 

 

𝑃𝑠𝑐(𝑟, 𝑡) = 𝜌
𝑅(𝑡)

𝑟
(2�̇�(𝑡)2 + �̈�(𝑡)𝑅(𝑡)) 

(4) 

We have employed a size-integration (SI) 

method based on the RP equation to predict the 

nonlinear emission from a group of 

microbubbles with a wide size range based on 

several previous studies [22, 34-36]. The method 

uses a weighting scheme based on the histogram 

of bubble size distribution to determine the 

cumulative backscatter. 

 

𝑆(𝑓) = ∑ 𝑃𝑠𝑐(𝑟𝑘. 𝑓)𝑤𝑘%
𝑗
𝑘=𝑖                                    (5) 

 

Here, 𝑤𝑘% is the number percentage weight of 

bubbles with size 𝑘, 𝑃𝑠𝑐(𝑟𝑘 . 𝑓) is the scattered 

pressure from bubbles with size 𝑘 at a frequency 

band 𝑓, 𝑆(𝑓) is the total scattered pressure from 

bubbles with size ranging from 𝑖 to 𝑗 at the 

frequency band 𝑓. 

Size distribution is a critical factor in controlling 

the acoustic response from a bubble population. 

A Gaussian distribution is a reasonable estimate 

for the size distribution of many contrast bubbles 

[37, 38]. The Gaussian distribution equation is 

given by: 

 

𝑃𝐷𝐹 =
1

𝜎√2𝜋
(𝑒
−(𝑅−𝜇)2

2𝜎2 ) 

(6) 

 

In this Equation, 𝜎 expresses standard deviation, 

and 𝜇 is the mean radius. 

 

2.3. Validation of the numerical model 

 

Figs. 1 and 2 are presented by applying a 

Marmottant nonlinear shell model to the coated 

bubble dynamic Eq. 3 and then employing Eq. 4. 

According to Fei Li et al. [33], the shell 

parameters were applied (Shell elastic, 𝜒 =
0.0263,N/m and dilatational shell viscosity, 

𝜅𝑠 = 9.96 × 10−10,,Kg/s). Sarkar et al. [39]  

obtained the frequency responses of the 

fundamental and subharmonic components 

using Fast Fourier Transform (FFT) and 

compared them with the experimental results.  

Fig. 3 shows the solution algorithm 

schematically. 
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Fig. 1. Fundamental response of the Sonazoid microbubble with the 3 MHz excitation frequency for different excitation pressure 

amplitudes. 

Fig. 2. Subharmonic response of the Sonazoid microbubble with the 3 MHz excitation frequency for different excitation 

pressure amplitudes. 

Fig. 3. Schematic of problem-solving algorithm in MATLAB. 
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3. Results and discussion

Size distribution is paramount for controlling the 
frequency response of microbubble contrast 
agents. According to Eq. 6, two dominant 
parameters control radial size distribution, mean 
radius and standard deviation. Three different 
distributions and the frequency response of 
microbubbles are shown in Figs. 4, 5, and 6. The 
comparison of Fig. 4 and Fig. 5 shows that the 
lower standard deviation mode for radial size 
distribution has more robust subharmonic and 

ultra-harmonic responses than the higher 
standard deviation mode (in the range of 5dB for 
Fig. 4 vs. 5). The subharmonic and ultra-
harmonic responses are weakened by increasing 
the radial amplitude. Figs. 5 and 6 show the 
population of microbubbles with the same 

standard deviation and different mean radii. 
Larger microbubbles emit higher harmonic 
responses than smaller microbubbles, so the 
fundamental response is amplified in the size 
distribution with a larger mean radius. 

Fig. 4. (a) Gaussian distribution of microbubbles with the mean radius of 0.8 µm and standard deviation of 0.2 µm and (b) 

Frequency response of microbubbles with this distribution under a driving pressure of 0.28 MPa. 

Fig. 5. (a) Gaussian distribution of microbubbles with the mean radius of 0.8 µm and standard deviation of 0.4 µm and (b) 

Frequency response of microbubbles with this distribution under a driving pressure of 0.28 MPa. 

Diameter (µm) 

Diameter (µm) 

(b) 
(a) 

(b) 
(a)
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The effect of excitation pressure on the 
frequency response is essential. Figs. 7 and 8 
show the subharmonic and fundamental 
amplitudes for the mean radii at excitation 
pressures of 280, 340, and 400kPa. It is observed 
that the fundamental and subharmonic responses 
increase with increasing stimulation pressure. 
Fig. 8 shows that the subharmonic response 

occurs at a mean radius of 1 μm maximum. This 
peak value remains constant with increasing 
excitation pressure at a mean radius of 1 (μm). 
When the predominant size of the microbubbles 
becomes smaller or larger than this radius, the 
subharmonic signal strength decreases 
significantly. 

Fig. 6. (a) Gaussian distribution of microbubbles with the mean radius of 1.2 µm and standard deviation of 0.4 µm and (b) 

Frequency response of microbubbles with this distribution under a driving pressure of 0.28 MPa. 

Fig. 7. Fundamental response of the population of SonoVue microbubbles in terms of mean distribution value for different 

excitation pressure amplitude in 6 MHz excitation frequency. 

Mean diameter (µm) 

(a) (b) 

Fundamental response with standard deviation of 0.2 µm 

Diameter (µm) 
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Figs. 9 and 10 show the effect of excitation 
frequency on the fundamental and subharmonic 
responses for the mean radius parameter. It is 
observed that with decreasing stimulation 
frequency, the fundamental response increases. 
Moreover, as the excitation frequency increases, 
the subharmonic response first decreases. For 
example, in Fig. 10, the subharmonic response at 
frequency 6MHz first increases and reaches a 
peak value within a mean radius of 1 μm and 
then decreases. At an excitation frequency of 8 

MHz, the peak value reaches a mean radius of 
0.8 μm. Moreover, at the excitation frequency of 
4MHz, peaks occur in a mean radius of 1.6 
micrometers (Fig. 11 shows the peak values). 
Increasing the excitation frequency causes 
microbubbles with smaller radii to be needed to 
amplify the subharmonic and vice versa. 
Therefore, to improve the subharmonic response 
at different frequencies, it is better to optimize 
the distribution of the microbubbles. 

Fig. 8. Subharmonic response of the population of SonoVue microbubbles in terms of mean distribution value for different 

excitation pressure amplitude in 6 MHz excitation frequency. 

Fig. 9. Fundamental response of the population of SonoVue microbubbles in terms of mean distribution value for different 

excitation frequencies in 0.4 MPa excitation pressure. 

Mean diameter (µm) 

Mean diameter (µm) 

Subharmonic respone with standard deviation of 0.2  µm 

fundamental respone with standard deviation of 0.2  µm 
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Fig. 10. Subharmonic response of the population of SonoVue microbubbles in terms of mean distribution value for 

different excitation frequencies in 0.4 MPa excitation pressure. 

Fig. 11. The peak point of figures of the subharmonic response of microbubbles to different excitation frequencies in excitation 

pressure amplitude 0.4 MPa and standard deviation 0.2 µm. 

By reducing the standard deviation in the radial 
distribution of microbubbles, we finally reach 
the limit state without distribution. This 
condition is called needle distribution. This limit 
state is shown in Fig. 12. In this figure, reducing 
the standard deviation puts the radius of the 
microbubbles around the mean value. For 
example, with a standard deviation of 0.01 μm, 

all bubbles are in the radius of 1.59 and 1.61 μm. 
Fig. 13 shows the frequency response in the 
distribution cases of Fig. 12. By reducing the 
standard deviation, the frequency response 
reaches Fig. 14. Fig. 14 is a non-distributed 
mode for a radius of 1.6 μm (In the distribution 
case with a standard deviation of 0.01 μm, Fig. 
13 is quite similar to 14). 

Mean diameter (µm) 

Mean diameter (µm) 

Subharmonic respone with standard deviation 0.2  µm 
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(a) (b) 

(c) (d) 
Fig. 13. Frequency responses of SonoVue microbubbles with an incident wave with excitation frequency 6 MHz and pressure 
amplitude 0.28 MPa and mean radius 1.6 µm, (a) Standard deviation=1e-7m, (b) Standard deviation=5e-7m, (c) Standard 

deviation=1e-8m and (d) Standard deviation=5e-8m. 

Fig. 14. SonoVue single bubble frequency response in the radius of 1.6 μm and frequency of 6 MHz, and pressure range of 

0.28 MPa. 

Diameter (µm) 
Fig. 12. The size distribution for four different standard deviations, radius range between 0.1 to 3 µm, and mean radius 1.6 

µm. 
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4. Conclusions

Demographic behaviors of small bubbles 
exposed to pulsed Ultrasound have not been 
fully explored. In this study, the effect of the 
radial distribution of Marmottant shell 
microbubbles on the frequency response was 
investigated. It was shown that at each excitation 
pressure, there is an optimal radial distribution 
for the subharmonic response. At a constant 
excitation pressure of 0.4 MPa and a standard 
deviation of 0.2, the fundamental response 
increases with increasing mean radius, but the 
subharmonic response first increases to a peak 
value and then decreases.  
This peak value occurs for 4.6 and 8 MHz 
frequencies in the mean radii of 0.8.1 and 1.6 
μm. It is also observed that the fundamental and 
subharmonic responses are directly related to the 
excitation pressure. At a constant excitation 
frequency, the mean value of the fundamental 
response increases with increasing radius, and 
the subharmonic response first increases and 
reaches its peak value and then decreases. This 
peak value occurs for radial distributions with a 
standard deviation of 0.2 μm at frequencies of 4, 
6, and 8 MHz and independent of excitation 
pressure, at a mean radius of 1.6, 1, and 0.8 μm, 
respectively. The data show that the value of the 
subharmonic peak occurs less with increasing 
frequency in the mean radius. In the constant 
mean radius mode, the subharmonic response is 
generated and amplified by increasing the 
standard deviation (increasing the radial range of 
microbubbles).  
In contrast, the fundamental answer is almost 
constant. It was also shown that the frequency 
response tends to be a frequency response 
without distribution by decreasing the standard 
deviation. According to studies, the radial 
distribution of microbubbles can be optimized to 
achieve a more robust subharmonic response. 
This optimization can be effective in 
subharmonic imaging. Therefore, controlling the 
radial distribution of microbubbles can help 
improve imaging quality. 
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