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Abstract

Microbubbles are used in ultrasound imaging, targeted drug delivery,
destruction of cancerous tissues, etc. On the other hand, the demographic

Article info:

Article history:

Received: 14/04/2022 behaviors of small bubbles under the influence of Ultrasound have not been
Accepted:  09/05/2023 fully detected or studied. This study investigates the effect of the radial
Revised: 12/05/2023 distribution of Sonazoid microbubbles on frequency response. It is shown that

. the optimal subharmonic response is possible by controlling the size
Online: 14/05/2023 distribution. For this reason, the numerical simulation of the dynamic behavior
Keywords: of a coated microbubble is performed using MATLAB coding and the modified

Rayleigh-Plesset equation. The Gaussian distribution is then applied, and the
frequency response is investigated. It was shown that at a constant excitation
pressure of 0.4 MPa and a standard deviation of 0.2, with increasing mean
radius, the fundamental response increases. The subharmonic response
increases reaches a peak value and decreases. This peak value occurs for
frequencies of 4,6, and 8 MHz in the mean radius of 0.8, 1 and 1.6 um. By
increasing the frequency of excitation, it is transferred to a smaller mean radius.
It is also observed that the fundamental and subharmonic responses are
amplified by increasing the excitation pressure. Studies show that the optimal
subharmonic response can be achieved for various applications by controlling
the size distribution of microbubbles.
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Microbubble contrast agents (1 to 10 um) are
stabilized with a shell (lipid or albumin).

1. Introduction

During the past years, encapsulated
microbubbles have been used in Ultrasound
imaging and therapy. Due to the difference in
acoustic impedance, these microbubbles cause
the scattering and reflection of ultrasound waves
sent from the targeted place. Blood is a poor
reflector of ultrasound, therefore, to improve
these properties, microbubbles in micron size are
injected intravenously into the blood flow.

Rayleigh-Plesset (RP) equation is used to
simulate the radial behavior of a free bubble.
However, this equation changes for the
encapsulated microbubble that includes the
shell.

De Jong et al. [1] did a different study on the RP
equation and investigated the effect of the shell
on the radial behavior of the bubble and
proposed two parameters, the shell elasticity
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parameter (S,) and the shell friction (Sf) to
correct it. By presenting a theoretical model for
the radial behavior of an encapsulated
microbubble in a Newtonian fluid, Church [2]
found that the resonance frequency of the
microbubble increases with the addition of a
shell and increases the rigidity of the
microbubble [3, 4]. Hoff et al. [5] obtained a new
model for the size changes of an encapsulated
microbubble with a thin shell thickness, which
predicted the acoustic scattering caused by the
radial oscillation of the bubble. Chatterjee et al.
[6] proposed the simplest Newtonian model for
the enclosed microbubble shell. Shankar et al.
[7] showed that the threshold pressure value for
subharmonic onset depends on the actual
damping value. Finally, Sarkar et al [8]
investigated the scattering responses by
presenting a viscoelastic interface model for a
microbubble enclosed by a thin shell.
Marmottant et al. [9] proposed a model that
simulates the nonlinear behavior of an
encapsulated microbubble at high excitation
pressure by considering three different states for
bubble surface tension. The investigation of
Forsberg et al. [10, 11] showed that the
subharmonic response significantly depends on
the excitation and hydrostatic pressure
amplitude. The advantages of subharmonic
response, which is a microbubble contrast agent,
were investigated by Shankar ef al. [12]. Adam
et al. [13] numerically investigated the effect of
ambient pressure on the acoustic scattering of
Optison. The subharmonic response of a
microbubble contrast agent as a function of
ambient pressure was investigated
experimentally by Andersen and Jensen [ 14]. By
investigating the effects of pressure and
frequency, Katiyar ef al. [15] achieved a critical
frequency ratio with peak subharmonic
response. The studies of Leodore et al. [16]
showed that there is a correlation between the
amplitude of the subharmonic component and
the hydrostatic pressure in the growth phase of
the subharmonic generation.

Microbubbles are available in imaging
applications in different radial sizes, and the size
of the microbubble radius is an essential factor
in the microbubble frequency response.
Overvelde et al. [17] experimented with the
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subharmonic  behavior of  phospholipid
microbubbles of various sizes. They also studied
the subharmonic threshold using the Marmottant
model, and the results showed that at low
pressures and a moving frequency twice the
frequency of the bubble intensification, the
subharmonic response occurred. Moreover, they
showed that the change in bubble shell elasticity
as a function of bubble radius increases the
subharmonic behavior of microbubbles. Sun et
al. [18] addressed the dependence of the ultra-
harmonic response and the overpressure using
experimental and theoretical measurements.
They also examined the relationship between
subharmonic and ultra-harmonic responses to
excitation frequency and pressure amplitude.
They concluded that for microbubbles with size
distribution, the subharmonic and ultra-
harmonic responses could be reduced or
increased by increasing the ambient pressure and
excitation frequency. The strength of these
responses was proportional to the excitation
pressure amplitude. Basude and Wheatly [19]
obtained the radial distribution of the ultrasound
contrast agents with the ST68-PFC Surfactant
shell, studied the frequency response, and found
that the subharmonic and ultra-harmonic
responses Increased with increasing excitation
pressure. Frinking et al. [20] examined the
subharmonic  response  of  phospholipid
microbubbles (such as SonoVue) using the
Marmottant model. They found that
subharmonic components and "compression-
only" behavior are observed by applying
ambient pressure. Moreover, the increase of the
sub-harmonic amplitude is a function of the
ambient pressure.

Lotsberg et al. [21] investigated the nonlinear
emission of the encapsulated bubble
experimentally and presented the obtained
results with an emphasis on the subharmonic
emission. They stimulated clouds of bubbles
with a frequency of 3.5 to 4 MHz and observed
that the subharmonic component increases with
excitation pressure cube in the range of 50 to 100
kPa. Zheng and Shandas [22] defined a modified
model of the Rayleigh-Plesset Equation.
Moreover, they investigated the frequency
response of the radial distribution of Levovist
and ST68 microbubbles experimentally and



JCARME

theoretically. Moreover, they optimized the
excitation pressure with a radius for
subharmonic, ultra-harmonic, and  second-
harmonic responses. Numerical investigation of
the characteristics of nonlinear acoustic emission
from a coated bubble was done by Zhang et al.
[23]. They showed that bubble size has a
significant effect on the type of bubble acoustic
emission. Newsome et al. [24] mathematically
investigated the effect of the size distribution of
bubbles on the propagation of acoustic waves.
Haghi et al. [25] found that by increasing the
diameter of the microbubbles from 1 to 4
micrometers, the superharmonic response
decreases. Streeter et al. [26] Investigated the
nonlinear behavior of a  polydisperse
microbubble cluster. They showed that the
largest microbubbles could force smaller ones
into  period-doubling and  subharmonic
oscillations. Tsochatzidis et al. [27] performed
perfusion and molecular imaging studies with
microbubbles in sorted diameters of 1.1 £ 0.43
pm and 3.3 + 1.95 pm and unsorted state (0.9 +
0.45 um) to investigate the effect of diameter of
microbubbles of contrast agents on imaging
sensitivity. They showed that tailoring size
distributions improve imaging sensitivity over
unsorted populations.

Determining  the size  distribution of
microbubbles in the liquid is essential for
studying the multi-dispersion bubble system.
The simplest method is to experimentally
measure the bubble size distribution in the liquid
and use a histogram. This method works very
well in laboratory studies but is not applicable in
engineering applications due to the associated
costs. Also, measuring an accurate histogram
becomes a complex task in some working
conditions [28, 29]. By using mathematical
functions such as Ando et al [30] and
Hilgenfeldt ef al. [31] bubble size distributions,
can be study a multi-scatter bubble system.
Other mathematical functions such as Gaussian
distribution have a much wider application than
previous cases because there are two adjustable
parameters in the Gaussian distribution.
Gaussian distribution and its parameters are used
in this study to investigate the distribution.
Microbubbles are in different radii in
applications (especially ultrasound imaging). So
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far, less attention has been paid to the radial
distribution of microbubbles and their effects on
the frequency response. In contrast, this subject
is used in applications, especially ultrasound
imaging. On the other hand, the demographic
behaviors of small bubbles under the influence
of Ultrasound have not been fully detected or
studied. We show in this study that the optimal
subharmonic response is possible by controlling
the radial distribution. In this research, the
modified RP equation is solved with the help of
an ODE solver in MATLAB software. We
discuss the effects of the radial distribution of
microbubbles at different excitation pressures
and frequencies on the frequency response.
Finally, we show that the radial distribution of
microbubbles can lead to different changes in the
frequency response and the existence of a
maximum value in the subharmonic response.
Therefore, controlling the radial distribution of
microbubbles can help improve imaging quality.

2. Equations and validation

If the microbubble in the liquid is excited by the
ultrasound field and the excitation pressure is
large enough, the bubble starts to oscillate. The
microbubble oscillations cause radial changes,
which the mathematical Equation can simulate.
In this research, it is assumed that the bubble is
always spherical during pressure fluctuations.
The equation governing the behavior of the
encapsulated microbubble is based on the RP
equation. In these models, viscoelastic terms can
be shown as y(R) and k°(R), the efficient
surface tension and efficient dilatational
viscosity, respectively. Added terms represent
the contributions caused by viscoelastic stresses
produced in the encapsulation.

(RR+382) = ey (20) " (1 - 22
p ) = Yoo\ p c
2y(R) 4R .
—— TR R)
R
— 4= Py +pa(®)

(M
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Py is the hydrostatic pressure, c is sound speed,
and p,(t) is the sinusoidal excitation pressure.
Also, the initial conditions are (t = 0) = Ry and
R(t=0)=0.

2.1. Marmottant model

Marmottant et al. [9] provided a model for
bubble radius oscillation in which surface
tension has three different states: the buckling
state ( R < Rpyckiing )» the elastic state (y(R) =

— 1)) and the rupture state.

Abuckling
y(R)
( 0 R < Rbuckliny
RZ
=44 R2 -1 Rbuckling <SR< Rrupture
buckling
Ow R 2 Rryprure

and k*(R) = k¥(constant)
(2)

It is supposed that Ryycriing = Ro, and on the
bubble surface, the pressure is in equilibrium.
The modified RP equation for this model is
defined as below.

p(5) =+ 2 () 3
_ﬂ> _Zr®) 4R
c

R R?

3)
2.2. Radius distribution
The scattered pressure of a spherical

microbubble at a distance r from the center can
be expressed as follows [32, 33].

Pee(r,£) = p@(zﬁ(t)2 +R(OR®))
(4)
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We have employed a size-integration (SI)
method based on the RP equation to predict the
nonlinear emission from a group of
microbubbles with a wide size range based on
several previous studies [22, 34-36]. The method
uses a weighting scheme based on the histogram
of bubble size distribution to determine the
cumulative backscatter.

S(F) = Thei Pec(rie- W% (5)

Here, w;, % is the number percentage weight of
bubbles with size k, Py (ry.f) is the scattered
pressure from bubbles with size k at a frequency
band f, S(f) is the total scattered pressure from
bubbles with size ranging from i to j at the
frequency band f.

Size distribution is a critical factor in controlling
the acoustic response from a bubble population.
A Gaussian distribution is a reasonable estimate
for the size distribution of many contrast bubbles
[37, 38]. The Gaussian distribution equation is
given by:

—(R—p)*
(e 20 )

PDF =

oV2m
(6)

In this Equation, o expresses standard deviation,
and u is the mean radius.

2.3. Validation of the numerical model

Figs. 1 and 2 are presented by applying a
Marmottant nonlinear shell model to the coated
bubble dynamic Eq. 3 and then employing Eq. 4.
According to C. C.hurch [33], the shell
parameters were applied (Shell elastic, y =
0.0263 N/m and dilatational shell viscosity,
kS =9.96 x 10710 Kg/s). Sarkar et al. [39]
obtained the frequency responses of the
fundamental and subharmonic components
using Fast Fourier Transform (FFT) and
compared them with the experimental results.
Fig. 3 shows the solution algorithm
schematically.
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Fig. 1. Fundamental response of the Sonazoid microbubble with the 3 MHz excitation frequency for different excitation
pressure amplitudes.
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Fig. 2. Subharmonic response of the Sonazoid microbubble with the 3 MHz excitation frequency for different excitation
pressure amplitudes.

Radius i Size O (R
| Radius] | distibution | T S
k4 y
- Frequency

\ Spectra
) a S
| equation | I Qckscatte/r -

Nonlinear
| Emission |
\  Spectra

A 4

Fig. 3. Schematic of problem-solving algorithm in MATLAB.
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3. Results and discussion

Size distribution is paramount for controlling the
frequency response of microbubble contrast
agents. According to Eq. 6, two dominant
parameters control radial size distribution, mean
radius and standard deviation. Three different
distributions and the frequency response of
microbubbles are shown in Figs. 4, 5, and 6. The
comparison of Fig. 4 and Fig. 5 shows that the
lower standard deviation mode for radial size
distribution has more robust subharmonic and
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ultra-harmonic responses than the higher
standard deviation mode (in the range of 5dB for
Fig. 4 vs. 5). The subharmonic and ultra-
harmonic responses are weakened by increasing
the radial amplitude. Figs. 5 and 6 show the
population of microbubbles with the same
standard deviation and different mean radii.
Larger microbubbles emit higher harmonic
responses than smaller microbubbles, so the
fundamental response is amplified in the size
distribution with a larger mean radius.
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Fig. 4. (a) Gaussian distribution of microbubbles with the mean radius of 0.8 um and standard deviation of 0.2 pm and (b)
Frequency response of microbubbles with this distribution under a driving pressure of 0.28 MPa.
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Fig. 5. (a) Gaussian distribution of microbubbles with the mean radius of 0.8 um and standard deviation of 0.4 um and (b)
Frequency response of microbubbles with this distribution under a driving pressure of 0.28 MPa.
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The effect of excitation pressure on the
frequency response is essential. Figs. 7 and 8
show the subharmonic and fundamental
amplitudes for the mean radii at excitation
pressures of 280, 340, and 400kPa. It is observed
that the fundamental and subharmonic responses
increase with increasing stimulation pressure.
Fig. 8 shows that the subharmonic response
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occurs at a mean radius of 1 pm maximum. This
peak value remains constant with increasing
excitation pressure at a mean radius of 1 (um).
When the predominant size of the microbubbles
becomes smaller or larger than this radius, the
subharmonic  signal  strength  decreases
significantly.

(b)

5 10 1
Frequency (Hz) fc = 6 (MHz) 10

Fig. 6. (a) Gaussian distribution of microbubbles with the mean radius of 1.2 um and standard deviation of 0.4 um and (b)
Frequency response of microbubbles with this distribution under a driving pressure of 0.28 MPa.

Fundamental response with standard deviation of 0.2 um

-22 T T | !
A A
L A | 4
-24 A o
A o
& -26 = ¢ L o
= 4 ° =]
g ¢
5 o
£ : 9 : I
a |
g A Py : o o Pressure amplitude = 280 kPa
< 30 o 1
Py o ¢ Pressure amplitude = 340 kPa
R, ) EC———————— - . ) -
o A Pressure amplitude = 400 kPa
34 L L i i
1 1.5 2 25 3 35 4 4.5

Mean diameter (um)

Fig. 7. Fundamental response of the population of SonoVue microbubbles in terms of mean distribution value for different

excitation pressure amplitude in 6 MHz excitation frequency.
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Figs. 9 and 10 show the effect of excitation
frequency on the fundamental and subharmonic
responses for the mean radius parameter. It is
observed that with decreasing stimulation
frequency, the fundamental response increases.
Moreover, as the excitation frequency increases,
the subharmonic response first decreases. For
example, in Fig. 10, the subharmonic response at
frequency 6MHz first increases and reaches a
peak value within a mean radius of 1 pm and
then decreases. At an excitation frequency of 8
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MHz, the peak value reaches a mean radius of
0.8 um. Moreover, at the excitation frequency of
4MHz, peaks occur in a mean radius of 1.6
micrometers (Fig. 11 shows the peak values).
Increasing the excitation frequency causes
microbubbles with smaller radii to be needed to
amplify the subharmonic and vice versa.
Therefore, to improve the subharmonic response
at different frequencies, it is better to optimize
the distribution of the microbubbles.
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Fig. 8. Subharmonic response of the population of SonoVue microbubbles in terms of mean distribution value for different
excitation pressure amplitude in 6 MHz excitation frequency.
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Fig. 9. Fundamental response of the population of SonoVue microbubbles in terms of mean distribution value for different
excitation frequencies in 0.4 MPa excitation pressure.
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Subharmonic respone with standard deviation 0.2 pm
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Fig. 10. Subharmonic response of the population of SonoVue microbubbles in terms of mean distribution value for different
excitation frequencies in 0.4 MPa excitation pressure.

-15

Peak subharmonic response with different frequency

=20

30— Frequency = 6 MHz

Frequency =4 MHz
P

-
--"

-45 — Frequency =8 MHz —;

Amplitude (dB)
A
(=]

1 1.5

2.5
Mean diameter (pm)

Fig. 11. The peak point of figures of the subharmonic response of microbubbles to different excitation frequencies in excitation
pressure amplitude 0.4 MPa and standard deviation 0.2 pm.

By reducing the standard deviation in the radial
distribution of microbubbles, we finally reach
the limit state without distribution. This
condition is called needle distribution. This limit
state is shown in Fig. 12. In this figure, reducing
the standard deviation puts the radius of the
microbubbles around the mean wvalue. For
example, with a standard deviation of 0.01 pm,

all bubbles are in the radius of 1.59 and 1.61 pum.
Fig. 13 shows the frequency response in the
distribution cases of Fig. 12. By reducing the
standard deviation, the frequency response
reaches Fig. 14. Fig. 14 is a non-distributed
mode for a radius of 1.6 pum (In the distribution
case with a standard deviation of 0.01 um, Fig.
13 is quite similar to 14 ).
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Fig. 12. The size distribution for four different standard deviations, radius range between 0.1 to 3 um, and mean radius 1.6 pm.
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Fig. 13. Frequency responses of SonoVue microbubbles with an incident wave with excitation frequency 6 MHz and pressure
amplitude 0.28 MPa and mean radius 1.6 um. (a) Standard deviation=1e-7m. (b) Standard deviation=5e-7m. (c) Standard

deviation=1e-8m. (d) Standard deviation=5e-8m.
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4. Conclusions

Demographic behaviors of small bubbles
exposed to pulsed Ultrasound have not been
fully explored. In this study, the effect of the
radial distribution of Marmottant shell
microbubbles on the frequency response was
investigated. It was shown that at each excitation
pressure, there is an optimal radial distribution
for the subharmonic response. At a constant
excitation pressure of 0.4 MPa and a standard
deviation of 0.2, the fundamental response
increases with increasing mean radius, but the
subharmonic response first increases to a peak
value and then decreases.

This peak value occurs for 4.6 and 8 MHz
frequencies in the mean radii of 0.8.1 and 1.6
um. It is also observed that the fundamental and
subharmonic responses are directly related to the
excitation pressure. At a constant excitation
frequency, the mean value of the fundamental
response increases with increasing radius, and
the subharmonic response first increases and
reaches its peak value and then decreases. This
peak value occurs for radial distributions with a
standard deviation of 0.2 um at frequencies of 4,
6, and 8 MHz and independent of excitation
pressure, at a mean radius of 1.6, 1, and 0.8 um,
respectively. The data show that the value of the
subharmonic peak occurs less with increasing
frequency in the mean radius. In the constant
mean radius mode, the subharmonic response is
generated and amplified by increasing the
standard deviation (increasing the radial range of
microbubbles).

In contrast, the fundamental answer is almost
constant. It was also shown that the frequency
response tends to be a frequency response
without distribution by decreasing the standard
deviation. According to studies, the radial
distribution of microbubbles can be optimized to
achieve a more robust subharmonic response.
This optimization can be effective in
subharmonic imaging. Therefore, controlling the
radial distribution of microbubbles can help
improve imaging quality.
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