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thermal and mechanical loads. The properties such as elastic modulus and 
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keeping the poisson’s ratio constant.  This theory fulfills the nullity 
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solutions presented herein could provide engineers with the potential for 

the design and development of exponentially graded plates for advanced 

engineering applications. 
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1. Introduction

Functionally graded materials (FGMs) are 

advanced materials whose properties are 

assorted in a predetermined manner to enhance 

the overall structural functioning. Nowadays, 

FGMs are substitute materials in several 

structural applications used in situations where 

the operating conditions are severe.  

Typically, FGMs are fabricated by mixing two 

different material phases with continuous 

composition gradation. Such gradation gives 

smooth variation in material properties. Most 

plate structures are normally exposed to thermal 

and mechanical loads. In fact, the FGM plates 

and shells are used to resist high-temperature 

environments. Conversely, the heterogeneity 

and widespread utilization of FGMs in structural 

members require the necessity to develop simple 

and precise theoretical models to understand the 

behaviour of the structures. 
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In the past, many authors have paid great effort 

in modeling the composite/sandwich plates and 

introduced various plate theories to study the 

FGMs behavior. Reddy and Chin [1], Zenkour 

[2-4], Kant et al. [5-9], Kadkhodayan [10], 

Matsunaga [11, 12], Xiang [13], Sidda Reddy et 

al. [14, 15] and Suresh Kumar et al. [16] used 

third-order displacement terms in the thickness 

direction to develop the higher order theory. 

Mohammad and Singh [17] presented the 

theoretical formulations to explore the 

thermomechanical study of FGMPs. Thermo-

bending problems of sandwich plates made of 

FG (FGSPs) were explored by Zenkour and 

Alghamdi [18], assuming that the sandwich plate 

faces are isotropic. Mechab et al. [19] analyzed 

the flexural behavior of FGPs. Carrera et al. [20] 

examined the single-layered and multilayered 

FG plates and shells. Daouadji et al. [21] 

investigated the static behavior of FG plates. 

Neves et al. [22] analyzed FGM plates for the 

static analysis. Zenkour [23] investigated the 

exponentially graded plates for static problems 

under transverse load using both 2-D plate 

theory through using trigonometric function 

(TPT) and three-dimensional solutions. Mantari 

and Soares [24, 25] explored the static behavior 

of exponentially graded plates (EGPs). Neves et 

al. [26] derived an HSDT to the static and 

eigenproblems of FGPs. Praveen and Reddy [27] 

investigated the transient analysis based on the 

nonlinear condition of FGPs under thermal 

loading using FEM. The bending behavior of 

temperature-dependent FGPs resting on an 

elastic foundation under thermomechanical load 

was investigated by Attia et al. [28]. A simple 

and refined nth order SDPT was developed to 

investigate the mechanical and thermal buckling 

behavior of FGPs. [29]. The thermal buckling 

analysis of cross-ply laminated composite plates 

using a simplified HSDT was investigated by 

Chikh et al.[30]  El-Haina et al.[31] presented ab 

analytical approach to examine the thermal 

buckling behavior of thick FGSPs. Menasria et 

al. [32] chose an undetermined integral-based 

displacement function for examining the thermal 

buckling of FGSPs. Beldjelili et al. [33] studied 

the hygro-therm-mechanical bending behavior 

of  FGPs. The vibration behaviour of the 

nanosize FGPs considering the quasi 3D HSDT 

was developed by Boutaleb et al. [34]. A simple 

quasi-3D HSDT was developed by Boukhlif et 

al. [35] to investigate the fundamental 

frequencies of FGPs.  

Bouanati et al. [36] used an efficient quasi 3D 

HSDT to explore the vibration behavior and 

wave propagation of triclinic/orthotropic plates. 

An efficient beam theory was used by Ait 

Atmane et al. [37] to analyze the static analysis 

of FGS beams with porosity considering the 

elastic foundations. Benahmed et al. [38] used 

hyperbolic theory to explore the static behavior 

of FGP resting on elastic foundation considering 

the thickness stretching. Karami et al. [39] 

presented a quasi-three dimensional theory to 

wave dispersion behavior for nano FGPs resting 

on an elastic foundation under a hygrothermal 

environment. Zaoui et al. [40] analyzed the 

vibration of FGPs rests on elastic foundation 

using quasi-three dimensional theory. Bouhadra 

et al. [41] developed an improved HSDT 

considering the stretching effect in FGPs. 

Younsi et al. [42] examined the static behavior 

of FG plates based on hyperbolic shape function 

considering the thickness stretching influence. 

Abualnour et al. [43] explored the frequency 

behavior of the FGPs with all edges that are 

simply support.  

In this paper, a novel theory is proposed and 

formulated to the bending response of EGPs 

subjected to thermo-mechanical loads. The 

physical properties varied exponentially along 

with thickness direction. The equation of motion 

is derived using Hamilton’s principle. The 

present results are compared with three-

dimensional solutions. The influence of thermal 

and mechanical loads, thickness ratio, and aspect 

ratios on the bending response of EGPs are 

studied in detail. The analytical formulations and 

solutions presented herein could provide 

engineers with the potential for the design and 

development of exponentially graded plates for 

advanced engineering applications. 

 

2. Formulation of novel theory 
 

The physical dimensions of the rectangular plate 

with the adopted coordinate system are shown in 

Fig.1. The plate is composed of entirely ceramic 

material at the top side and graded to the bottom 

side (z=-h/2) that contains entirely metallic 

material. The elastic modulus and thermal 
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modulus of the FG plate vary exponentially 

along the thickness using Eq. (1), and Poisson’s 

ratio (υ) is assumed to be constant.  
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When p=0, it represents the property at the 

bottom surfacem and z=+h/2 represents the 

property at the top surface, i.e.:  Pt=  pExpPb
. 

 

2.1. Displacement field 

 

The following is the displacement function 

which is proposed for the first time. 
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where, sin(r/2)/4hav(r/2)f * +=                                2(d) 

and hav(rz/h)zf(z) =                                     

2(e) 
 

The Haversine function is simply written as hav 

( ) in Eq. 2(d-e). The in-plane displacement 

function is dependent on "r” and must be chosen. 

The optimal value of “r” is calculated after 

numerous computations from Eq. 8(a-f).  

 

2.2. Strain-displacement relations 

 

For the proposed displacement field, the strain 

and displacements are expressed in Eq. 2(a-d).  
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2.3. Constitutive relations 

 

In the present paper, the plane stress condition is 

considered, and the effect of 𝜎𝑧 is neglected. In 

the, case of FGPs the stress in plane, according 

to Hook’s law, can be written as: 

 

)f(z)kzkE(εσ th−++= 1

 4(a) 

 

The thermal strain of the EGM plate under 

temperature condition is: 

 

 011)()( zTzTth =  4(b) 

 

and the shear stress is:  
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where σ= ( σxx, σyy, τxy)t, τ= (τyz, τxz)t, and E and 

G are defined as: 
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Fig. 1. Representation of exponentially graded 

rectangular plate. 
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2.4.  Equations of motion 

 

In analytical form, Hamilton’s principle is: 

 

∫
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By the substitution of δU and δV in in Eq. 5(a) 

and integrating by parts and grouping the 

coefficients of ,,,, xoo wvu  and 
y , 

the following equations are obtained: 
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where the in-plane force and transverse force 

moment resultants are defined as: 
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Using Eq. 4(a-c) in Eq. 7(a-b), the stress 

resultants of exponentially graded material 

plates can be related to the total strains by: 
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where N=[Nx, Ny, Nxy]t, M= [Mx, My, Mxy]t,  P= 

[Px, Py, Pxy]t,  Q=[Qyz, Qxz] t , R=[Rxz, Ryz]t, 

NT=[NTx, NTy, 0]t, M= [MTx, MTy, 0]t, and P= 

[PTx, PTy, 0]t                                  (8c)  

 

















=

33

1112

1211

00

0

0

A

AA

AA

A

;                    9(a) 

















=

33

1112

1211

00

0

0

B

BB

BB

B

;                    9(b) 

















=

33

1112

1211

00

0

0

E

EE

EE

E

;                    9(c) 

















=

33

1112

1211

00

0

0

D

DD

DD

D

;                   9(d) 

















=

33

1112

1211

00

0

0

F

FF

FF

F

;                    (9e) 

















=

33

1112

1211

00

0

0

H

HH

HH

H

;                              9(f)  









=

11

11

0

0

J

J
J

;                                            9(g) 









=

11

11

0

0

K

K
K

;                     9(h) 









=

11

11

0

0

L

L
L

;                                9(i)  



JCARME                                              Bending of exponentially . . .                                    Vol. 11, No. 1 

261 

 









=

11

11

0

0

M

M
M

;                                  9(j) 

( ) dzzzfzfzfzz
zE

FHEDBA

FHEDBA

FHEDBA

h

h

























−


−
=


















−

2

1

1

)(,)]([),(,,,1
1

)( 22

2/

2/

2

333333333333

121212121212

111111111111






   10(a) 

  ( )dzzfzf
zE

MKJ

h

h

2

2/

2/

111111 )]([),(,1
)1(2

)(


+
= 

−


  

                                                                    10(b)   

  dzzfzzTz
zE

PMN

PMN
T

h

h

T

yy

T

yy

T

yy

T

xx

T

xx

T

xx
)(1)()(

1

1

1

)(
2/

2/

2










−
=














−







   

                                                                    10(c) 

 

By substituting Eq. 8(a-b) into Eq. 6(a-e), the 

displacements expressed as: 
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In Eq. 3(a), 6(a-e), and 7(a-e) comma (,) 

represents the partial differentiation w. r. t to the 

respective coordinate subscripts. 

 

3. Analysis of EGPs 

 

The solutions of Eq. 11(a-e) for EGPs with all 

sides are simple support, and the boundary 

conditions for  the plate are: 
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At x=0, a,; Nxx= Mxx= Pxx= v0= w0= θy= θz=0    
                                                                    12(a) 
 
At y=0, b;  Nyy= Myy= Pyy= u0= w0= θx= θz=0   
                                                                    12(b) 
 
The sinusoidal variation of mechanical and 
thermal load is chosen as: 
 

yxqyxq = sinsin),(                                                  (13a) 

 

The load ( ),( yxq ) is in the thickness direction 

and q is the intensity of the load: 
 

yxyxTzfzf
h

yxT
h

z
yxTzyxT

 sinsin)],()]([
1

),(),([),,(

3

*

21

++

+=

           

                                                                    13(b) 
 

Solution expressions that totally satisfy the 
above conditions in Eq. (14) are: 
 

yxuyxu  sincos),(0 =
                                                       

 14(a) 

yxvtyxv = cossin),,(0                                                
14(b) 

yxwyxw = sinsin),(                                  14(c) 

yxyxx = sincos),(                           14(d) 

yxyxy = cossin),(                         14(e) 

 

where, 0≤x≤a; 0≤y≤b, α = a/  and β = b/ .   
By substituting Eq. 14(a-e) into equations of 
motion given by Eq. 11(a-e), and by simplifying 
these expressions leads to a set of 5 algebraic 

equations involving u, v, w,  , and  and 

solved using an inverse method. These algebraic 
expressions  arranged in matrix form: 
  
[STIFFNESS MATRIX]5×5[UNKNOWNS] 

5×1=[FORCE MATRIX] 5×1.                                                 (15) 

 

The elements of the stiffness matrix are given in 
the Appendix. 
Unknowns of the above equations gives u, v, w,

 , and  are used to compute xooo wvu ,,, , 

and
y . 

 

4. Results and discussion 
 
The proposed displacement field dependent on  
‘r’, which is calculated to provide deflections 

and stresses of EGPs close to the three-
dimensional solutions [23]. It is noticed that the 
present novel theory estimates the bending 
results with minimum error with three-
dimensional solutions [35] at r=4.21. The 
bending results of simply supported EGPs using 
proposed HSDT for deflections and stresses 
under mechanical and thermal loads are 
presented. These numerical results are compared 
with the three-dimensional solutions, the well-
known TPT, and HSDT, given by Zenkour [23] 
and Mantari et al. [24, 25]. 
In the present study, the displacements and 
normal and shear stresses, are found at their 

maximum absolute values. The u and 
xz are 

evaluated at (0, b/2), while v and transverse shear 

stress
yz are evaluated at (a/2, 0) and 

xy is 

evaluated at (0, 0). The normal stresses 
yy  and 

w is evaluated at (a/2, b/2). 
All the results are given in the non-dimensional 
quantities as follows: 
 

),,(
10

10
,,

2

2

3

4
wvu

h
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hE

qa
wvu

m

m
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+

=      16(a) 
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2

2
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h

aTE

h

qa
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=                         

                                                                    16(b) 

),(
1

,
2

yzxz
mm

yzxz

h

aTE

h

qa



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+

=                  16(c) 

xy

mm

xy

h

aTE

h

qa





2

2

2

2

2 10

10

+

=                                     16(d)        

 

The numerical results of the present HSDT are 
presented for various (b/a) ratios and p. Fig. 2 
shows the variation of the exponential function 
in the thickness of an EGP and varies according 
to the Eq. (17). 
 

















+

2

1

h

z
pExp                                               (17) 

 
Tables 1-3 present results of dimensionless 
center deflections, a/h = 2, 4, 10, respectively, 
subjected to mechanical load.  
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Fig. 2. Distribution of exponential function through 

the thickness of EGP. 

 
Fig. 3(a). Influence of thermomechanical loads on w  

of square EGM Plate (p=0.5) vs. a/h. 

 

Fig. 3(b). Infuence of thermo mechanical loads on w  

of EGP (p=0.5, a/h=10) vs. a/b. 

Fig. 4(a). Influence of u on (a/h=2) rectangular  plate 

(b/a=6). 

 

Fig. 4(b). Influence of v on (a/h=2) rectangular 

(b/a=6) plate. 

Fig. 4(c). Influence of thermo mechanical loads on 

u  of rectangular (b/a=2) EGP (p=1.5, a/h=2).  

Fig. 4(d). Influence of thermomechanical loads on v

, on rectangular (b/a=2) EGP (p=1.5, a/h=2).  
 

The present results without inclusion of the 

thickness stretching effect, 0=zz  are agreed 

well to three dimensional solutions and the 
solutions given by Mantari and Guedes Soares 

[25] who considered 0zz . The present 

theory results slightly under-estimates the 3D 
solutions for larger values of (b/a) and slightly 
over-estimates for smaller values of (b/a). 
Mantari and Guedes Soares [25], also gave over-
estimated center deflections in which the 
thickness stretching influence was not included. 
However, TPT [23] and HPT [23] provide 
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under-estimated center deflections even the 
thickness stretching included. Therefore, the 
present theory is more accurate in estimating the 
center plate deflections. The dimensionless 
center deflections decrease with increasing p and 
decreasing b/a. This is due to the fact that the 
Young’s modulus of the EGM plate increases. 
Fig. 3(a) shows the influence of a/h on the 
dimensionless center deflection of EGP (p=0.5). 
The influence of thermal and mechanical loads 
is considered. The deflection is more for plate 
exposed to mechanical load only, while it 
decreases with the inclusion of thermal load 
(T2). The deflection behavior of the plate is quite 
different and increases when the thermal load 
(T3) is included. Also, it was found that the shear 
deformation effect decreases for a/h >20.  Fig. 
3(b) shows the influence of b/a on the 
dimensionless center deflection for EGP 
(p=0.5). It is noted that, the center deflection 
increases with the increase in aspect ratio at all 
loading conditions, except q=0, T1=0, T2=1, and 
T3=1. Also. It was observed that the inclusion of 
T2=1 and T3=1 decreases the center plate 
deflections. 

The thickness distributions of in-plane ( vu , ) 

displacements for p=0.1, 0.3, 0.5, 0.7, and 1 at 

a/h= 2 and b/a=6 under mechanical load is 

shown in Fig. 4(a-b). The in-plane displacements 

increase from the top side to the bottom side of 

the plate. At 16.0−z , the in-plane 

displacements are independent of the exponent, 

p. Fig. 4(c-d) shows the influence of mechanical  

and thermal loads on in-plane displacements of 

the EGM plate through the thickness for p=1. 5, 

at a/h=2 and b/a=2. The in-plane displacements 

increase from the top side of the plate to the 

bottom side of the plate due to the mechanical 

load, q=0 or 1, T2=1, and T3=0. However, the 

opposite can be found when q=0 and T2=T3=1. 

The figures accentuate the pronounced influence 

took part by the different thermal and bending 

loads on the analyzed in-plane displacements. 

Tables 4 to 6 present results of 
yy of square and 

rectangular EGPS, a/h: 2, 4, 10. The results for 

the
yy increase with increasing p, while it 

decreases with b/a. The present theory results 

slightly under-estimating the normal stresses

yy for rectangular plates at a/h:2 and 4, and for 

square plates at a/h:4, slightly over-estimating. 

The supremacy of the present novel theory 

against TPT [23], HPT [23], and Mantari et al. 

[24] can be noticed. 

The 
yy is compressive at and beneath the mid-

plane, and the tensile over the mid-plane for 

p=0.1, 0.3, 0.5, 0.7, and 1 at a/h= 4 and b/a=2 

under mechanical load is shown in Fig. 5 (a). For 

the various chosen p, the plate with p=1 gives the 

maximum tensile stress and compressive stress 

at the upper side and lower side of the plate, 

respectively. At 275.0−z , the in-plane 

compressive stresses and at 31.0z , the in-

plane tensile stresses are independent of 

exponent, p. Fig. 5(b) shows the influence of 

mechanical and thermal loads on 
yy of EGM 

plate through the thickness for p=1.5  at a/h=2 

and b/a=2.  The figure emphasis, in-plane 

stresses are greatly influenced by different 

thermal and mechanical loads.  

Table 7 presents the results of 
xx of square and 

rectangular EGM plates at a/h:10. The results for 

xx , increases with increase in  p and decreases 

in b/a. The present HSDT results are in very 

good agreement with those reported by Mantari 

et al. [24 , 25]. From Fig. 6(a-b) a similar 

inference can be drawn from the distribution  of 

xx . Fig. 7(a) shows the distribution of in-plane 

shear stress,
xy along the thickness of the EGPs, 

a/h= 2, 4 10 for p=0.5 and b/a=2 under 

mechanical load. The in-plane shear stresses,
xy

, are compressive over the middle plane of the 

plate and tensile at and below the middle plane 

of the plate. 
Note that for different a/h ratios chosen, the very 
thick plate, a/h=2 yield maximum tensile stress 
and minimum compressive shear stress at the 
bottom surface and top surface of the plate, 
respectively. It is important to observe that, the 
shear stress varies slightly, as the a/h increases 

through the thickness direction. At 34.0z , 

the 
xy are independent of the thickness of the 

plate. The distribution of 
xy through the 

thickness direction of the EGM plate under 
mechanical and thermal loads is shown in Fig. 
7(b). It is noticed that, the stresses are 
independent of the type of load at 𝑧̅ ≅
0.17 and 0.21. 
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Table 1. Comparison of w  for several EGPs, a/h=2. 

b/a Theory ɛzz n=0.1 n=0.3 n=0.5 n=0.7 n=1 n=1.5 

6 3-D[23]  1.63774 1.48846 1.35184 1.22688 1.05929 0.82606 

 Present 0 1.63783 1.48131 1.33916 1.21009 1.03853 0.802941 

 Mantari et al.[25] ≠0 1.63654 1.47953 1.33644 1.20618 1.03325 0.79387 

 Manteri et al.[24] 0 1.73465 1.56884 1.41822 1.28145 1.10032 0.84996 

 TPT [23] ≠0 1.62939 1.47309 1.33066 1.20101 1.02823 0.79056 

 HPT [23] ≠0 1.54777 1.39964 1.26493 1.14249 0.97956 0.7556 

5 3-D[23]  1.60646 1.46007 1.32607 1.20349 1.03907 0.81024 

 Present 0 1.61009 1.45623 1.31649 1.18962 1.02097 0.789399 

 Mantari et al.[25] ≠0 1.60532 1.4513 1.31094 1.18315 1.01352 0.77867 

 Manteri et al.[24] 0 1.70246 1.53972 1.39188 1.25762 1.07981 0.83401 

 TPT [23] ≠0 1.59825 1.44493 1.30522 1.17804 1.00856 0.7754 

 HPT [23] ≠0 1.51991 1.37444 1.24214 1.12188 0.96184 0.74184 

4 3-D[23]  1.55146 1.41013 1.28074 1.16235 1.00352 0.78241 

 Present 0 1.5611 1.41193 1.27645 1.15345 0.989959 0.765472 

 Mantari et al.[25] ≠0 1.55042 1.40166 1.2661 1.14267 0.97884 0.75195 

 Manteri et al.[24] 0 1.64584 1.48849 1.34553 1.21569 1.04374 0.80596 

 TPT [23] ≠0 1.54348 1.39541 1.26048 1.13764 0.97395 0.74874 

 HPT [23] ≠0 1.47089 1.33009 1.20201 1.08559 0.93065 0.71762 

3 3-D[23]  1.44295 1.3116 1.19129 1.08117 0.93337 0.7275 

 Present 0 1.46363 1.32378 1.19677 1.08147 0.928233 0.717834 

 Mantari et al.[25] ≠0 1.4421 1.30373 1.17761 1.06279 0.91041 0.69925 

 Manteri et al.[24] 0 1.53405 1.38735 1.25402 1.13291 0.97254 0.7506 

 TPT [23] ≠0 1.43542 1.29771 1.17221 1.05795 0.90567 0.69615 

 HPT [23] ≠0 1.37394 1.24238 1.2269 1.01386 0.86898 0.66977 

2 3-D[23]  1.19445 1.08593 0.9864 0.8952 0.77266 0.60174 

 Present 0 1.23607 1.11797 1.01074 0.913395 0.784033 0.606451 

 Mantari et al.[25] ≠0 1.19408 1.07949 0.97503 0.8799 0.75377 0.57862 

 Manteri et al.[24] 0 1.2776 1.15533 1.04413 0.94307 0.80929 0.62377 

 TPT [23] ≠0 1.18798 1.07399 0.97009 0.87548 0.74936 0.57578 

 HPT [23] ≠0 1.1508 1.04052 0.94012 0.84878 0.72712 0.55975 

1 3-D[23]  0.57693 0.52473 0.47664 0.4324 0.37269 0.28904 

 Present 0 0.63847 0.577441 0.522 0.47166 0.404741 0.312871 

 Mantari et al.[25] ≠0 0.57789 0.5224 0.47179 0.42567 0.36485 0.27939 

 Manteri et al.[24] 0 0.63625 0.57517 0.51948 0.46874 0.40178 0.30791 

 TPT [23] ≠0 0.57308 0.51806 0.46788 0.42216 0.36117 0.27712 

 HPT [23] ≠0 0.58586 0.52955 0.47814 0.43127 0.36871 0.28246 
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  Table 2. Comparison of w for several EGPs, a/h=4. 

b/a Theory ɛzz  n=0.1 n=0.3 n=0.5 n=0.7 n=1 n=1.5 

6 3-D[23]   1.1714 1.06218 0.96331 0.87378 0.75501 0.59193 

 Present 0  1.16801 1.05715 0.95706 0.86666 0.74712 0.58377 

 Mantari et al.[25] ≠0  1.17033 1.05825 0.95628 0.86359 0.74032 0.57128 

 Manteri et al.[24] 0  1.19202 1.07885 0.97667 0.88437 0.76228 0.59545 

 TPT [23] ≠0  1.16681 1.05509 0.95345 0.86107 0.73821 0.56969 

 HPT [23] ≠0  1.00649 0.91087 0.82448 0.7464 0.64306 0.50178 

5 3-D[23]   1.14589 1.03906 0.94236 0.85478 0.73859 0.57904 

 Present 0  1.14315 1.03465 0.93668 0.84821 0.73120 0.57133 

 Mantari et al.[25] ≠0  1.14484 1.0352 0.93545 0.84478 0.72419 0.55882 

 Manteri et al.[24] 0  1.16628 1.05555 0.95557 0.86525 0.74578 0.58253 

 TPT [23] ≠0  1.1414 1.0321 0.93268 0.84231 0.72212 0.55726 

 HPT [23] ≠0  0.98508 0.8915 0.80694 0.7305 0.62935 0.49105 

4 3-D[23]   1.10115 0.99852 0.9056 0.82145 0.70979 0.55643 

 Present 0  1.0995 0.99513 0.90091 0.81581 0.70326 0.54948 

 Mantari et al.[25] ≠0  1.10013 0.99477 0.89891 0.81178 0.69589 0.53696 

 Manteri et al.[24] 0  1.12113 1.01469 0.91856 0.83172 0.71685 0.55987 

 TPT [23] ≠0  1.09682 0.9918 0.89625 0.80941 0.6939 0.53546 

 HPT [23] ≠0  0.94753 0.8575 0.77615 0.70262 0.60529 0.47222 

3 3-D[23]   1.01338 0.91899 0.8335 0.75606 0.65329 0.51209 

 Present 0  1.01369 0.91746 0.83059 0.75212 0.64833 0.50652 

 Mantari et al.[25] ≠0  1.01243 0.91546 0.82724 0.74704 0.64037 0.49408 

 Manteri et al.[24] 0  1.03254 0.9345 0.84594 0.76593 0.66008 0.51541 

 TPT [23] ≠0  1.00938 0.91272 0.82479 0.74486 0.63854 0.4927 

 HPT [23] ≠0  0.87379 0.79076 0.71571 0.64787 0.55806 0.43525 

2 3-D[23]   0.81529 0.73946 0.67075 0.60846 0.52574 0.412 

 Present 0  0.819111 0.741343 0.67111 0.60767 0.52375 0.40908 

 Mantari et al.[25] ≠0  0.81448 0.73647 0.66547 0.60093 0.51508 0.39732 

 Manteri et al.[24] 0  0.83246 0.75338 0.68192 0.61734 0.53188 0.41503 

 TPT [23] ≠0  0.81202 0.73425 0.6635 0.59917 0.51361 0.3962 

 HPT [23] ≠0  0.707 0.63979 0.57901 0.52405 0.45126 0.35169 

1 3-D[23]   0.349 0.31677 0.28747 0.26083 0.22534 0.18054 

 Present 0  0.35522 0.32145 0.29091 0.26330 0.22674 0.17674 

 Mantari et al.[25] ≠0  0.3486 0.31519 0.28477 0.2571 0.22028 0.16972 

 Manteri et al.[24] 0  0.36017 0.32589 0.29485 0.26676 0.22952 0.17854 

 TPT [23] ≠0  0.34749 0.31419 0.28388 0.25631 0.21961 0.16922 

 HPT [23] ≠0  0.31111 0.28146 0.25461 0.23027 0.198 0.15377 
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                Table 3. Comparison of w  for several EGPs, a/h=10. 

b/a Theory 
ɛz

z 
n=0.1 n=0.3 n=0.5 n=0.7 n=1.0 n=1.5 n=2.0 n=2.5 n=3.0 

6 Present 0 1.035 0.9370 0.8488 0.7694 0.6645 0.5216 0.4101 0.3223 0.2530 

 Mantari et al.[25] 
≠

0 
1.0354 0.9363 0.8462 0.7644 0.6558 0.5063 0.3913 0.3018 0.2324 

 Manteri et al.[24] 0 1.0388 0.9405 0.852 0.7723 0.667 0.5236 0.4115 0.3235 0.2539 

 TPT [23] 
≠

0 
1.0321 0.9333 0.8436 0.7621 0.6538 0.5054 0.3901 0.3006 0.2314 

5 Present 0 1.0112 0.9155 0.8293 0.7517 0.6493 0.5096 0.4006 0.3149 0.2471 

 Mantari et al.[25] 
≠

0 
1.0115 0.9147 0.8267 0.7468 0.6406 0.4952 0.3823 0.2948 0.2271 

 Manteri et al.[24] 0 10.149 0.9189 0.8324 0.7545 0.6516 0.5115 0.402 0.316 0.248 

 TPT [23] 
≠

0 
1.0083 0.9118 0.8241 0.7445 0.6387 0.4938 0.381 0.2937 0.2261 

4 Present 0 0.9694 0.8777 0.7951 0.7207 0.6225 0.4886 0.3841 0.3019 0.2369 

 Mantari et al.[25] 
≠

0 
0.9696 0.8768 0.7925 0.7159 0.6141 0.4747 0.3664 0.2826 0.2177 

 Manteri et al.[24] 0 0.973 0.8809 0.798 0.7233 0.6247 0.4903 0.3854 0.3029 0.2377 

 TPT [23] 
≠

0 
0.9665 0.8741 0.79 0.7137 0.6123 0.4733 0.3653 0.2815 0.2167 

3 Present 0 0.8878 0.8037 0.7281 0.6599 0.5700 0.4474 0.3517 0.2765 0.21699 

 Mantari et al.[25] 
≠

0 
0.8877 0.8027 0.7255 0.6554 0.5622 0.4346 0.3355 0.2587 0.1992 

 Manteri et al.[24] 0 0.8909 0.8066 0.7307 0.6622 0.572 0.4489 0.3528 0.2773 0.2176 

 TPT [23] 
≠

0 
0.8849 0.8002 0.7233 0.6534 0.5605 0.4333 0.3344 0.2577 0.1983 

2 Present 0 0.7043 0.6376 0.5776 0.5235 0.4522 0.3549 0.2789 0.2192 0.1720 

 Mantari et al.[25] 
≠

0 
0.7037 0.6364 0.5752 0.5196 0.4457 0.3445 0.2659 0.205 0.1579 

 Manteri et al.[24] 0 0.7066 0.6397 0.5795 0.5252 0.4536 0.356 0.2797 0.2198 0.1724 

 TPT [23] 
≠

0 
0.7015 0.6344 0.5734 0.518 0.4444 0.3435 0.2651 0.2043 0.1572 

1 Present 0 0.2806 0.2540 0.2301 0.2085 0.1800 0.1412 0.1109 0.0871 0.0683 

 Mantari et al.[25] 
≠

0 
0.2799 0.2531 0.2287 0.2066 0.1772 0.137 0.1057 0.0814 0.0627 

 Manteri et al.[24] 0 0.2816 0.255 0.2309 0.2093 0.1807 0.1417 0.1112 0.0873 0.0684 

 TPT [23] 
≠

0 
0.279 0.2523 0.228 0.206 0.1767 0.1366 0.1053 0.0811 0.0624 

 

The 
xz in different EG rectangular plates, p= 

0.1, 0.3, 0.5, 0.7, 1, 1.5, 2, 2.5, and 3 for a/h=10 
is presented in Table 8. From this table, it is 

observed that the stress, xz  decreases with both 
the increase in the exponent, p, and the decrease 
in the aspect ratio, b/a. The present stress results 
are very close to those of Manteri et al. [24, 25], 
but TPT [23] over-estimating the stresses. Fig. 

8(a) shows the distribution of shear stresses
xz

, through the thickness of square EGPs, p= {0.1, 
0.3, 0.5, 0.7, 1}, for a/h=10. 

From Fig. 8(a), it can be noticed that the stresses 

are maximum at the mid-plane and zero at the 

upper side and lower side of the plate. The 

stresses decrease with the increase in the 

exponent, p, below the mid-plane and increases 

at and above the mid-plane. The effect of aspect 

ratio on stress,
yz  distributions along the 

thickness of the EGP for a/h: 2 at p=0.5 is 

shown in Fig 8(b). The stresses are zero at the 

lower side and upper side of the plate and 

maximum at the mid-plane. The stresses 

decrease with the increase in  b/a. 
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Table 4. Comparison of 
yy for EGPs, a/h=2. 

b/a Theory ɛzz n=0.1 n=0.3 n=0.5 n=0.7 n=1 n=1.5 

6 3-D[23] ≠0 0.29429 0.31008 0.32699 0.34508 0.37456 0.43051 

 Present 0 0.22421 0.24048 0.25775 0.27608 0.30568 0.36116 

 Mantari et al.[25] ≠0 0.27628 0.29544 0.31592 0.3378 0.37374 0.44163 

 Manteri et al.[24] 0 0.21871 0.23447 0.25122 0.269 0.29804 0.34981 

 TPT [23] ≠0 0.29119 0.31184 0.33385 0.35731 0.39547 0.46786 

 HPT [23] ≠0 0.31192 0.33462 0.35873 0.38433 0.42573 0.50345 

5 3-D[23] ≠0 0.29674 0.31277 0.32993 0.34829 0.37821 0.435 

 Present 0 0.22808 0.24464 0.26223 0.28089 0.31105 0.36759 

 Mantari et al.[25] ≠0 0.27892 0.29833 0.31905 0.34119 0.37755 0.44614 

 Manteri et al.[24] 0 0.22185 0.23784 0.25484 0.27288 0.30236 0.35485 

 TPT [23] ≠0 0.29353 0.31439 0.33662 0.36032 0.39884 0.47187 

 HPT [23] ≠0 0.31327 0.33607 0.3603 0.38604 0.42764 0.50573 

4 3-D[23] ≠0 0.30084 0.31727 0.33486 0.35368 0.38435 0.44257 

 Present 0 0.23473 0.2518 0.26993 0.28918 0.32029 0.37868 

 Mantari et al.[25] ≠0 0.28335 0.30317 0.32431 0.3469 0.38394 0.45373 

 Manteri et al.[24] 0 0.22715 0.24354 0.26096 0.27945 0.30968 0.36337 

 TPT [23] ≠0 0.29743 0.31864 0.34124 0.36533 0.40446 0.47857 

 HPT [23] ≠0 0.31543 0.33842 0.36285 0.38878 0.43072 0.50943 

3 3-D[23] ≠0 0.30808 0.32525 0.34362 0.36329 0.39534 0.45619 

 Present 0 0.24721 0.26524 0.28441 0.30477 0.33772 0.39965 

 Mantari et al.[25] ≠0 0.29122 0.31177 0.33369 0.35707 0.39537 0.46732 

 Manteri et al.[24] 0 0.23675 0.25387 0.27206 0.29138 0.32297 0.37881 

 TPT [23] ≠0 0.30421 0.32606 0.34933 0.3741 0.41432 0.49035 

 HPT [23] ≠0 0.3189 0.3422 0.36695 0.39323 0.43572 0.51545 

2 3-D[23] ≠0 0.31998 0.33849 0.35833 0.37956 0.41417 0.47989 

 Present 0 0.27199 0.29198 0.31327 0.33594 0.37270 0.44207 

 Mantari et al.[25] ≠0 0.30422 0.32613 0.34945 0.37427 0.41483 0.49052 

 Manteri et al.[24] 0 0.25385 0.27231 0.29193 0.31276 0.3469 0.40636 

 TPT [23] ≠0 0.31463 0.33758 0.362 0.38796 0.43003 0.50925 

 HPT [23] ≠0 0.32223 0.34592 0.37109 0.39782 0.44102 0.52203 

1 3-D[23] ≠0 0.31032 0.32923 0.34953 0.37127 0.40675 0.47405 

 Present 0 0.29301 0.31530 0.33915 0.36467 0.40634 0.48585 

 Mantari et al.[25] ≠0 0.29244 0.31468 0.33826 0.36325 0.40405 0.47848 

 Manteri et al.[24] 0 0.25215 0.271 0.29102 0.31227 0.34773 0.40347 

 TPT [23] ≠0 0.29554 0.31811 0.34208 0.3675 0.40851 0.48508 

 HPT [23] ≠0 0.28882 0.31072 0.33398 0.35866 0.39852 0.47305 
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Table 5. Comparison of
yy for EGPs, a/h=4. 

b/a Theory ɛzz n=0.1 n=0.3 n=0.5 n=0.7 n=1 n=1.5 

6 3-D[23] ≠0 0.21814 0.23211 0.24699 0.26284 0.28857 0.33725 

 Present 0 0.20242 0.21652 0.23149 0.24740 0.27315 0.32165 

 Mantari et al.[25] ≠0 0.21265 0.22547 0.23934 0.2544 0.27953 0.32937 

 Manteri et al.[24] 0 0.20097 0.21493 0.22976 0.24553 0.27105 0.31917 

 TPT [23] ≠0 0.23686 0.25204 0.2683 0.28574 0.31441 0.3699 

 HPT [23] ≠0 0.2817 0.30133 0.32219 0.34435 0.38024 0.44786 

5 3-D[23] ≠0 0.2206 0.23476 0.24984 0.26591 0.29199 0.34133 

 Present 0 0.20529 0.21959 0.23478 0.25092 0.27705 0.32626 

 Mantari et al.[25] ≠0 0.21524 0.2283 0.24241 0.25772 0.28323 0.33373 

 Manteri et al.[24] 0 0.20366 0.21781 0.23285 0.24883 0.2747 0.32346 

 TPT [23] ≠0 0.23912 0.2545 0.27097 0.28863 0.31764 0.37371 

 HPT [23] ≠0 0.28261 0.30231 0.32323 0.34547 0.38148 0.44934 

4 3-D[23] ≠0 0.2247 0.23918 0.2546 0.27103 0.2977 0.34816 

 Present 0 0.21012 0.22476 0.24032 0.25685 0.28361 0.33402 

 Mantari et al.[25] ≠0 0.21957 0.23302 0.24754 0.26327 0.28943 0.34105 

 Manteri et al.[24] 0 0.20818 0.22264 0.23802 0.25435 0.28081 0.33066 

 TPT [23] ≠0 0.24286 0.25858 0.27539 0.29342 0.32299 0.38004 

 HPT [23] ≠0 0.28399 0.30379 0.32483 0.34719 0.38338 0.45159 

3 3-D[23] ≠0 0.23188 0.24692 0.26295 0.28002 0.30775 0.36021 

 Present 0 0.2188 0.23406 0.25027 0.26751 0.29542 0.34802 

 Mantari et al.[25] ≠0 0.22721 0.24137 0.25663 0.27312 0.30044 0.35404 

 Manteri et al.[24] 0 0.21619 0.23122 0.2472 0.26417 0.29166 0.34346 

 TPT [23] ≠0 0.24931 0.26563 0.28307 0.30174 0.3323 0.39106 

 HPT [23] ≠0 0.28588 0.30583 0.32702 0.34954 0.38601 0.45471 

2 3-D[23] ≠0 0.24314 0.25913 0.27618 0.29434 0.32385 0.37968 

 Present 0 0.23376 0.25011 0.26748 0.28596 0.31590 0.37238 

 Mantari et al.[25] ≠0 0.23953 0.25497 0.27154 0.28936 0.3187 0.37562 

 Manteri et al.[24] 0 0.22943 0.24542 0.2624 0.28045 0.30967 0.36473 

 TPT [23] ≠0 0.25878 0.27609 0.29456 0.31428 0.34644 0.40788 

 HPT [23] ≠0 0.28539 0.30534 0.32655 0.34908 0.38556 0.45428 

1 3-D[23] ≠0 0.22472 0.23995 0.25621 0.27356 0.30177 0.35885 

 Present 0 0.22527 0.24121 0.25818 0.27625 0.30557 0.36100 

 Mantari et al.[25] ≠0 0.22372 0.23907 0.25544 0.27291 0.30137 0.35555 

 Manteri et al.[24] 0 0.21636 0.23157 0.24774 0.26492 0.29273 0.34508 

 TPT [23] ≠0 0.23457 0.25098 0.26842 0.28698 0.31706 0.37386 

 HPT [23] ≠0 0.2408 0.25783 0.27593 0.29515 0.32627 0.38482 
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Table 6. Comparison of
yy for EGPs, a/h=10. 

b/a Theory ɛzz n=0.1 n=0.3 n=0.5 n=0.7 n=1.0 n=1.5 n=2.0 n=2.5 n=3.0 

6 Present 0 0.1962 0.20969 0.2240 0.2392 0.2638 0.3103 0.3646 0.4279 0.5017 

 Mantari et al.[25] ≠0 0.1954 0.2065 0.2185 0.2317 0.254 0.2988 0.3552 0.4255 0.5115 

 Manteri et al.[24] 0 0.198 0.2094 0.2237 0.2389 0.2635 0.31 0.3642 0.4275 0.5011 

 TPT [23] ≠0 0.2223 0.236 0.2507 0.2665 0.2926 0.3435 0.4054 0.4805 0.5708 

5 Present 0 0.1988 0.2124 0.2269 0.2423 0.2673 0.3144 0.3695 0.4336 0.5083 

 Mantari et al.[25] ≠0 0.198 0.2093 0.2216 0.235 0.2577 0.3031 0.3602 0.4312 0.5179 

 Manteri et al.[24] 0 0.1985 0.2122 0.2267 0.2421 0.267 0.314 0.369 0.4331 0.5077 

 TPT [23] ≠0 0.2245 0.2385 0.2534 0.2694 0.2958 0.3473 0.4098 0.4855 0.5764 

4 Present 0 0.2031 0.2171 0.2319 0.2476 0.2732 0.3213 0.3775 0.4431 0.5195 

 Mantari et al.[25] ≠0 0.2023 0.214 0.2267 0.2406 0.2638 0.3104 0.3686 0.4407 0.5282 

 Manteri et al.[24] 0 0.2028 0.2168 0.2316 0.2473 0.2728 0.3208 0.377 0.4424 0.5187 

 TPT [23] ≠0 0.2283 0.2425 0.2578 0.2742 0.3012 0.3535 0.417 0.4937 0.5857 

3 Present 0 0.2108 0.2252 0.2406 0.2570 0.2835 0.3335 0.3918 0.4599 0.5392 

 Mantari et al.[25] ≠0 0.2099 0.2224 0.2358 0.2504 0.2748 0.3233 0.3835 0.4575 0.5472 

 Manteri et al.[24] 0 0.2104 0.2248 0.2402 0.2565 0.2829 0.3328 0.391 0.4589 0.538 

 TPT [23] ≠0 0.2347 0.2495 0.2654 0.2825 0.3104 0.3645 0.4296 0.508 0.6016 

2 Present 0 0.223 0.2385 0.2548 0.2722 0.3002 0.3532 0.4151 0.4873 0.5713 

 Mantari et al.[25] ≠0 0.2223 0.236 0.2507 0.2666 0.293 0.3447 0.4079 0.4846 0.5768 

 Manteri et al.[24] 0 0.2225 0.2378 0.2541 0.2713 0.2993 0.3521 0.4137 0.4855 0.5692 

 TPT [23] ≠0 0.2441 0.2599 0.2768 0.2949 0.3244 0.381 0.4486 0.5291 0.6246 

1 Present 0 0.2075 0.2218 0.2370 0.2532 0.2794 0.3288 0.3865 0.4539 0.5324 

 Mantari et al.[25] ≠0 0.2063 0.2199 0.2344 0.2499 0.2753 0.324 0.3819 0.4506 0.5317 

 Manteri et al.[24] 0 0.2062 0.2204 0.2355 0.2515 0.2774 0.3264 0.3835 0.4502 0.5278 

 TPT [23] ≠0 0.2196 0.2345 0.2503 0.2671 0.2944 0.346 0.4065 0.4775 0.5603 

 

Table 7. Comparison of 
xx for EGPs, a/h=10. 

b/a Theory ɛzz n=0.1 n=0.3 n=0.5 n=0.7 n=1.0 n=1.5 n=2.0 n=2.5 n=3.0 

6 Present 0 0.6036 0.6450 0.6891 0.7359 0.8117 0.9548 1.12181 1.3166 1.54338 

 Mantari et al.[25] ≠0 0.6014 0.6426 0.6864 0.7329 0.8084 0.951 1.1177 1.3124 1.9394 

 Manteri et al.[24] 0 0.6029 0.6443 0.6882 0.635 0.8107 0.9536 1.1204 1.315 1.5415 

 TPT [23] ≠0 0.6271 0.6707 0.717 0.7661 0.8452 0.9935 1.1651 1.3637 1.5935 

5 Present 0 0.5917 0.6323 0.6755 0.7214 0.7958 0.9360 1.0998 1.2908 1.5131 

 Mantari et al.[25] ≠0 0.5895 0.6299 0.6727 0.7184 0.7923 0.9321 1.0955 1.2865 1.5091 

 Manteri et al.[24] 0 0.591 0.6315 0.6746 0.7205 0.7949 0.9347 1.0982 1.289 1.5111 

 TPT [23] ≠0 0.6149 0.6577 0.7031 0.7512 0.8287 0.7941 1.1424 1.3372 1.5626 

4 Present 0 0.5709 0.6101 0.6518 0.6960 0.7678 0.9031 1.0611 1.2455 1.4600 

 Mantari et al.[25] ≠0 0.5686 0.6075 0.6488 0.6928 0.7641 0.8989 1.0566 1.241 1.456 

 Manteri et al.[24] 0 0.57 0.6092 0.6508 0.695 0.7666 0.9016 1.0594 1.2434 1.4576 

 TPT [23] ≠0 0.5935 0.6348 0.6785 0.6249 0.7998 0.9401 1.1025 1.2907 1.5084 

3 Present 0 0.5298 0.5662 0.6049 0.6460 0.7126 0.8383 0.9850 1.1562 1.3554 
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 Mantari et al.[25] ≠0 0.5275 0.5635 0.6018 0.6425 0.7085 0.8335 0.98 1.1514 1.3514 

 Manteri et al.[24] 0 0.5288 0.5651 0.6037 0.6447 0.7112 0.08365 0.9828 1.1536 1.3523 

 TPT [23] ≠0 0.5514 0.5896 0.6302 0.6733 0.7427 0.873 1.024 1.199 1.4017 

2 Present 0 0.4363 0.4663 0.4981 0.5320 0.5869 0.6904 0.8113 0.9524 1.11679 

 Mantari et al.[25] ≠0 0.434 0.4634 0.4947 0.528 0.5822 0.6849 0.8056 0.9473 1.113 

 Manteri et al.[24] 0 0.435 0.4649 0.4966 0.5303 0.585 0.6881 0.8085 0.949 1.1125 

 TPT [23] ≠0 0.4552 0.4867 0.52 0.5554 0.6126 0.7201 0.8449 0.9898 1.158 

1 Present 0 0.2075 0.2218 0.2370 0.2532 0.2794 0.3288 0.3865 0.4539 0.5324 

 Mantari et al.[25] ≠0 0.2063 0.2199 0.2344 0.2499 0.2753 0.324 0.3819 0.4506 0.5317 

 Manteri et al.[24] 0 0.2062 0.2204 0.2355 0.2515 0.2774 0.3264 0.3835 0.4502 0.5278 

 TPT [23] ≠0 0.2196 0.2345 0.2503 0.2671 0.2944 0.346 0.4065 0.4775 0.5603 

 

Table 8. Comparison of 
xz for EGPs, a/h=10. 

b/a Theory ɛzz n=0.1 n=0.3 n=0.5 n=0.7 n=1.0 n=1.5 n=2.0 n=2.5 n=3.0 

6 Present 0 0.4676 0.4667 0.4650 0.4625 0.4571 0.4442 0.4267 0.4048 0.37953 

 Mantari et al.[25] ≠0 0.4634 0.4626 0.461 0.4586 0.4536 0.4416 0.4253 0.4065 0.3845 

 Manteri et al.[24] 0 0.4633 0.4625 0.4069 0.4585 0.4536 0.4415 0.4252 0.4064 0.3842 

 TPT [23] ≠0 0.4776 0.4769 0.4753 0.473 0.4681 0.4564 0.4405 0.4209 0.3981 

5 Present 0 0.4621 0.4613 0.4596 0.4571 0.4518 0.4390 0.4217 0.4001 0.37519 

 Mantari et al.[25] ≠0 0.4579 0.4571 0.4556 0.4532 0.4483 0.4364 0.4203 0.4017 0.38 

 Manteri et al.[24] 0 0.4579 0.4571 0.4555 0.4531 0.4482 0.4363 0.4202 0.4016 0.3797 

 TPT [23] ≠0 0.472 0.4713 0.4697 0.4674 0.4626 0.451 0.4353 0.4159 0.3935 

4 Present 0 0.4524 0.4516 0.4500 0.4475 0.4423 0.4298 0.4128 0.3918 0.36734 

 Mantari et al.[25] ≠0 0.4482 0.4475 0.4459 0.4436 0.4388 0.4271 0.4114 0.3933 0.372 

 Manteri et al.[24] 0 0.4482 0.4474 0.4458 0.4435 0.4387 0.4271 0.4113 0.3931 0.3717 

 TPT [23] ≠0 0.462 0.4613 0.4598 0.4575 0.4528 0.4415 0.4261 0.4071 0.3851 

3 Present 0 0.4328 0.4320 0.4304 0.4281 0.4231 0.4112 0.3949 0.3748 0.35145 

 Mantari et al.[25] ≠0 0.4286 0.4279 0.4264 0.4242 0.4196 0.4084 0.3934 0.3761 0.3558 

 Manteri et al.[24] 0 0.4285 0.4278 0.4263 0.4241 0.4195 0.4084 0.3933 0.376 0.3555 

 TPT [23] ≠0 0.4418 0.4411 0.4396 0.4375 0.433 0.4221 0.4074 0.3893 0.3686 

2 Present 0 0.3850 0.3843 0.3829 0.3808 0.3764 0.3658 0.3514 0.3335 0.3128 

 Mantari et al.[25] ≠0 0.381 0.3803 0.379 0.377 0.373 0.363 0.3497 0.3344 0.3165 

 Manteri et al.[24] 0 0.3809 0.3803 0.3789 0.377 0.3729 0.363 0.3496 0.3343 0.3162 

 TPT [23] ≠0 0.3927 0.3921 0.3908 0.3889 0.3849 0.3752 0.3621 0.346 0.3273 

1 Present 0 0.2411 0.2407 0.239 0.2385 0.2358 0.2292 0.2202 0.2091 0.19611 

 Mantari et al.[25] ≠0 0.238 0.2376 0.2368 0.2356 0.233 0.2268 0.2185 0.2094 0.1985 

 Manteri et al.[24] 0 0.238 0.2376 0.2368 0.2356 0.233 0.2268 0.2184 0.2093 0.1983 

 TPT [23] ≠0 0.2454 0.245 0.2442 0.243 0.2405 0.2344 0.2263 0.2162 0.2045 
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Fig. 5(a). Distribution of yy through the thickness 

of thick (a/h=4) rectangular (b/a=2) plate. 

Fig. 5(b). Influence of thermo mechanical loads on 

yy
, along the thickness of rectangular (b/a=2) EGP 

(p=1.5, a/h=2). 

Fig. 6(a). Influence of 
xx along the thickness of 

thick (a/h=4) rectangular (b/a=2) plate. 

Fig. 6(b). Influence of thermo mechanical  loads on 

xx , along the thickness of rectangular (b/a=2) EGP 

(p=1.5, a/h=2) . 

Fig. 7(a).Distribution of xy
 along the thickness of 

rectangular (b/a=2) EGP (p=0.5). 

Fig. 7(b). Influence of thermo mechanical loads on 

xy
along the thickness of thick (a/h=2) rectangular 

(b/a=2) EGM plate (p=0.5). 
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Fig. 8(a). Influence of 

xz along the thickness of 

square EGP (p=0.5) a/h=10. 

 

 

Fig. 8(b). Variaton of yz along the thickness of 

(a/h=2) EGP (p=0.5). 

 
Fig. 8(c). Influence of mechanical & thermal loads on 

xz along the thickness of (a/h=2) rectangular 

(b/a=2) EGP(p=1.5) 

 
Fig.8(d). Influence of thermo mechanical loads on 

yz along the thickness of thick (a/h=2) rectangular 

(b/a=2) EGP (p=1.5). 

 

5. Conclusions 

 

The thermomechanical behavior of EGPs is  

presented based on the new HSDT. The  elastic 

and thermal modulus of the EGPs are changed 

exponentially along the thickness of the plate. 

Hamilton’s principle is used to get the equations 

of motion. Closed-form results are obtained for 

the EGPs under bi-sinusoidal thermomechanical 

loads with all sides are simple support using the 

inverse method. From the numerical results, it 

can be inferred that the present novel theory 

without including the stretching effect estimates 

the displacements and stresses of the EGPs 

accurately with the well-known HPT [23], TPT 

[23], and Mantari et al. [24]. The gradients or 

inhomogeneities in materials play a vital role in 

estimating the bending behavior of the EGPs. 

The change of elastic modulus and thermal 

modulus in the thickness of the plate 

exponentially can avoid interface problems, and 

hence the stress variation is smooth. The 

analytical formulations and solutions presented 

in this paper should help in extending 

investigations and should provide the engineers 

with the potential for the design and 

development of exponentially graded plates for 

advanced engineering applications. 
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