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The present paper considers the devise and development of a novel theory
to examine the flexure analysis of exponentially graded plates exposed to
thermal and mechanical loads. The properties such as elastic modulus and
thermal modulus are assumed to vary exponentially along the thickness by
keeping the poisson’s ratio constant. This theory fulfills the nullity
conditions on the upper and lower sides of the exponentially graded plates
for transverse shear stress. Hamilton’s principle is used to derive the
equation of motion. The present theory’s numerical results are assessed
with three-dimensional elasticity solutions and the results of other authors
available in the literature. The influence of thermomechanical loads,
thickness ratios, and aspect ratios on the bending response of exponentially
graded plates are studied in detail. The analytical formulations and
solutions presented herein could provide engineers with the potential for
the design and development of exponentially graded plates for advanced
engineering applications.

sidhareddy 548@rediffmaail.com

1. Introduction

Functionally graded materials (FGMs) are
advanced materials whose properties are
assorted in a predetermined manner to enhance
the overall structural functioning. Nowadays,
FGMs are substitute materials in several
structural applications used in situations where
the operating conditions are severe.

Typically, FGMs are fabricated by mixing two
different material phases with continuous

composition gradation. Such gradation gives
smooth variation in material properties. Most
plate structures are normally exposed to thermal
and mechanical loads. In fact, the FGM plates
and shells are used to resist high-temperature
environments. Conversely, the heterogeneity
and widespread utilization of FGMs in structural
members require the necessity to develop simple
and precise theoretical models to understand the
behaviour of the structures.
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In the past, many authors have paid great effort
in modeling the composite/sandwich plates and
introduced various plate theories to study the
FGMs behavior. Reddy and Chin [1], Zenkour
[2-4], Kant et al. [5-9], Kadkhodayan [10],
Matsunaga [11, 12], Xiang [13], Sidda Reddy et
al. [14, 15] and Suresh Kumar et al. [16] used
third-order displacement terms in the thickness
direction to develop the higher order theory.

Mohammad and Singh [17] presented the
theoretical formulations to explore the
thermomechanical study of FGMPs. Thermo-
bending problems of sandwich plates made of
FG (FGSPs) were explored by Zenkour and
Alghamdi [18], assuming that the sandwich plate
faces are isotropic. Mechab et al. [19] analyzed
the flexural behavior of FGPs. Carrera et al. [20]
examined the single-layered and multilayered
FG plates and shells. Daouadji et al. [21]
investigated the static behavior of FG plates.
Neves et al. [22] analyzed FGM plates for the
static analysis. Zenkour [23] investigated the
exponentially graded plates for static problems
under transverse load using both 2-D plate
theory through using trigonometric function
(TPT) and three-dimensional solutions. Mantari
and Soares [24, 25] explored the static behavior
of exponentially graded plates (EGPs). Neves et
al. [26] derived an HSDT to the static and
eigenproblems of FGPs. Praveen and Reddy [27]
investigated the transient analysis based on the
nonlinear condition of FGPs under thermal
loading using FEM. The bending behavior of
temperature-dependent FGPs resting on an
elastic foundation under thermomechanical load
was investigated by Attia et al. [28]. A simple
and refined n™ order SDPT was developed to
investigate the mechanical and thermal buckling
behavior of FGPs. [29]. The thermal buckling
analysis of cross-ply laminated composite plates
using a simplified HSDT was investigated by
Chikh et al.[30] El-Haina et al.[31] presented ab
analytical approach to examine the thermal
buckling behavior of thick FGSPs. Menasria et
al. [32] chose an undetermined integral-based
displacement function for examining the thermal
buckling of FGSPs. Beldjelili et al. [33] studied
the hygro-therm-mechanical bending behavior
of FGPs. The vibration behaviour of the
nanosize FGPs considering the quasi 3D HSDT
was developed by Boutaleb et al. [34]. A simple
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quasi-3D HSDT was developed by Boukhlif et
al. [35] to investigate the fundamental
frequencies of FGPs.

Bouanati et al. [36] used an efficient quasi 3D
HSDT to explore the vibration behavior and
wave propagation of triclinic/orthotropic plates.
An efficient beam theory was used by Ait
Atmane et al. [37] to analyze the static analysis
of FGS beams with porosity considering the
elastic foundations. Benahmed et al. [38] used
hyperbolic theory to explore the static behavior
of FGP resting on elastic foundation considering
the thickness stretching. Karami et al. [39]
presented a quasi-three dimensional theory to
wave dispersion behavior for nano FGPs resting
on an elastic foundation under a hygrothermal
environment. Zaoui et al. [40] analyzed the
vibration of FGPs rests on elastic foundation
using quasi-three dimensional theory. Bouhadra
et al. [41] developed an improved HSDT
considering the stretching effect in FGPs.
Younsi et al. [42] examined the static behavior
of FG plates based on hyperbolic shape function
considering the thickness stretching influence.
Abualnour et al. [43] explored the frequency
behavior of the FGPs with all edges that are
simply support.

In this paper, a novel theory is proposed and
formulated to the bending response of EGPs
subjected to thermo-mechanical loads. The
physical properties varied exponentially along
with thickness direction. The equation of motion
is derived using Hamilton’s principle. The
present results are compared with three-
dimensional solutions. The influence of thermal
and mechanical loads, thickness ratio, and aspect
ratios on the bending response of EGPs are
studied in detail. The analytical formulations and
solutions presented herein could provide
engineers with the potential for the design and
development of exponentially graded plates for
advanced engineering applications.

2. Formulation of novel theory

The physical dimensions of the rectangular plate
with the adopted coordinate system are shown in
Fig.1. The plate is composed of entirely ceramic
material at the top side and graded to the bottom
side (z=-h/2) that contains entirely metallic
material. The elastic modulus and thermal
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modulus of the FG plate vary exponentially
along the thickness using Eg. (1), and Poisson’s
ratio (v) is assumed to be constant.

P(2) = Exp[ p(§+%ﬂ P, W

When p=0, it represents the property at the
bottom surfacem and z=+h/2 represents the

property at the top surface, i.e.. P=P,Exp[p]-

2.1. Displacement field

The following is the displacement function
which is proposed for the first time.

u=u,+Z[fy, —w,]+f@)v,
2(a)

v=v, +Zf 'y, -w ]+,
2(b)

kxml. W =W

2(c)

where, £~ = hav(r/2)+sin(r/2)/4 2(d)
and f(z) =zhav(rz/h)

2(e)

The Haversine function is simply written as hav
() in Eg. 2(d-e). The in-plane displacement
function is dependent on "r”” and must be chosen.

The optimal value of “r” is calculated after
numerous computations from Eq. 8(a-f).

2.2. Strain-displacement relations

For the proposed displacement field, the strain
and displacements are expressed in Eg. 2(a-d).

*
fowxx—Wxx

Exx Uo x N
fyr=) Yoy [T T Wvy Wy
exy uO,y"'VO,x f (Wx,y"‘\‘r’y,x)_zw,xy
Vx,x
1@ wyy  fmetzks ok
Yy xTW¥xy

3(a)
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{yﬂ} ={f*‘“y}+ f’(z){wy} —y+ £'(2)y* 3(0)
Ve f - Yy

2.3. Constitutive relations

In the present paper, the plane stress condition is
considered, and the effect of g, is neglected. In
the, case of FGPs the stress in plane, according
to Hook’s law, can be written as:

o =E(e+ 2K + f@QK —&™) 4(a)

The thermal strain of the EGM plate under
temperature condition is:

e"=a" (AT 1 0] 4(b)
and the shear stress is:
t=G@y+f'(2)y") 4(c)

Where o= ( Oxx, Oyy, Txy)t, = (Tyz, sz)t, and E and
G are defined as:

1 v 0
e-E@ 1, 1
1=v0 0 a-nyr2 X
. EQ {1 0}
20+v)[0 1
4(e)

7=h/2 b

’ e
2 ! 7/ %

Y /

— 4 ]
Fig. 1. Representation of exponentially graded
rectangular plate.
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2.4. Equations of motion

In analytical form, Hamilton’s principle is:

[, SU+6V=
0 5(a)
oU = + Tyy OY dz pdx dy
Al-n2| = YT
5(b)
6V=—Iqwdxdy 5(c)

By the substitution of 38U and 3V in in Eq. 5(a)
and integrating by parts and grouping the

coefficients of 6U,,0V,,dW,0y,, and Sy,
the following equations are obtained:

ouy *N,, +N,, =0 (6a)

ovy Ny, +N,,, =0 (6b)

owy M+ M, +2M,  +q=10

6(c)

80, :t'M, +f'M, +P, +P, - fQ,-R,=0
(6d)

60, f'M, +fM, +P, +P, - fQ,-R,=0
(6e)

where the in-plane force and transverse force
moment resultants are defined as:

N, My R ni2 | Ox

N, M, PR |= j o, [Lz, f(z)] dz 7(2)
L N Xy M Xy PXV e Txy
i R hi2 [,

sz XZ:| — J. |: Xz :|[1, f '(Z)] dZ
_Qyz RYZ PIRAY 7(b)

Using Eqg. 4(a-c) in Eqg. 7(a-b), the stress
resultants of exponentially graded material
plates can be related to the total strains by:
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N A B Ele¢ NT

M|=|B D F|k]|-|MT
1 T

P E F HJk P 8(a)

(ﬂ ZR , M 8(b)

Where Nz[Nx, Ny, ny]t, M: [M)(y My, MXy]ty P:

[Px, Py, Px]t Q=[Qy Qu] t, R=[Re, Ry,
NT=[NT,, NT,, 0]\, M= [MT,, MTy, O], and P=

[PTy, PTy, 0] (8¢c)
(A, A, O]
A= A12 Ail 0
0 0 Ayl 9(a)
Bll BlZ 0 ]
B= BlZ Bll 0
0 Bl 9(b)
Ell ElZ O ]
E=E, E;, O
[0 0 Eyl 50
_Dll D12 0
D= D12 D11 0
L0 0 Dsl; 0
_Fll |:12 0
F=|F, F, O
0 0 Fy, (9%)
Hll H12 0
H=H, H,; 0
0 Hsl, o(f)
] :[‘]11 0 }
0 Jul, 9(g)
K - {Ku 0 }
0 Ky , o(h)
L [Ln 0 }
O hul; 0
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M = My O
0 Mll .

&1 Bll Dll Ell
A’12 BlZ D12 E12
A33 BSS D33 E33

h/2 E(Z)
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90)

:jl (L2.2% f (). [F F, 2 (2) ) e

h/2

M11]: _[

{NT MT PT:|
T T T
NW MW Pyy

[‘]11 K11

-h/2

7h/2

h/2 E(Z)

E(2)
2(1+

v)

-V

2

10(a)

L '@).If'()F)dz

10(b)

{1 V}a @OAT@R z f(2)]dz

10(c)

By substituting Eq. 8(a-b) into Eq. 6(a-e), the
displacements expressed as:

8110 :Ailuo,xx + AiZVO,xy + Bll(f ‘/Ix,xx -

W )

+ BlZ( f *!//y,xy - \N,xyy) + Elll//x,xx + ElZV/y,xy
+ ASS(VO,xy + uO,yy) + BSS( f *lfl/x,yy + f*l//vay

- 2WO,xyy) + E33(l//y,xy + l//x,yy) - NIX,X

6V0 :Alzuo,xy + Allvo,yy + Blz ( f *Wx,xy —-W

11(a)

XXy )

+ Bll( f *Wy,yy _W,yyy) + ElZWx,xy + Ell\lly,yy
+ A33 (Vo,xx + uO,xy) + BSS( f *Wx,xy

+ f *\Vy,xx _2W0,xxy) + E33(\|jy,xx +\|/x,xy) - N;ll-y,y

11(b)

8W : Bll(uo,xxx + VO,yyy) + Blz (Vo,xxy + uO,xyy)

+ Dll( f *\Vx,xxx + f*\Vy,yyy _Wyyyy —W

| XXXX )

+ Fll(‘l’x,xxx + Wyyyy) + I:12 (\V Y, XXy + Wxxyy)
+ D12 ( f *\V ¥, XXy + f *Wx,xyy - zvv,xxyy)
+ ZB33 (VO,xxy + uO,xyy) + 2D33( f *Wx,xyy

+ f *Wy XXy 2Wxxyy) + FSS(Wx,xyy + Wy,xxy)

+9-N] —N!

XX, XX

.Yy

11(c)
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oy, B, f *uo,xx +B,f *VO,xy

+ Dll( f *Z\Vx,xx —f *W,xxx)

*2 * *
+ Dlz(f \Vy,xy — f W,xyy) + I:llf Wx,xx
+F,f *\Vy,xy + By, f *(VO,xy + uO,yy)

*2 *2 *
+D33(f Wx,yy+f \Vy,xy_Zf W,xyy)

+ F33 f *(Wx,yy +\|/y,xy)
+ E11(Uo,xx + Vo,xy) +F, (f *‘*ljx,xx W

+ Flz(f*Wy,xy _W,xyy)+ Hll\Vx,xx + HlZ\Vy,xy

+ E33(u0,yy +V0,xy) + FSS( f *WX,W +Wy,xy

- 2WO,xyy) + H33(9x vy + ey,xy)

%2 * *
_(‘]uf _Kllf _Luf Mn)‘gx
- f MIXX - Px-ix

11(d)

Sy, 1By, f Uy, +B, Vg,

*2 * #2 *
+D12(f \Vx xy f Wxxy)—i_Dll(f \lly al f Wyyy)
+ P, f Wxxy‘H:llf \|/yyy+Bs3f (V0xx Oxy)

+D33(f \Vxxy+f Wyxx 2f Wxxy)

+F;, f (\|JX o TV, o)
+Ep,(Ugy + Vo) + F,(f" Wy ~ Wy
+ Fn(f Wy —Wyyy) + le‘lfx,xy + Hu\lfy,yy

+ Egy(Upy + Vo) + Fas(F W,y W, 0 — 20, )
+Hay(Wyy + Wy 0)

(A K fT L, f

SVE T
—f Myy,y_Pyy,y

Mll)\lfy

11(e)
In Eg. 3(a), 6(a-e), and 7(a-e) comma (,)
represents the partial differentiation w. r. t to the
respective coordinate subscripts.
3. Analysis of EGPs
The solutions of Eq. 11(a-e) for EGPs with all

sides are simple support, and the boundary
conditions for the plate are:

261



JCARME

At X:O, a,, Nxx: Mxx: Pxx: Vo= Wo= ey: eZZO
12(a)

At y:O, b; Nyy: Myy= Pyy: Uo= Wo= 0x= 0,=0
12(b)

The sinusoidal variation of mechanical and
thermal load is chosen as:

q (x,y) =qsin ox sin fy (13a)

The load (q (X, Y) ) is in the thickness direction
and 9 is the intensity of the load:

T(xy,2) =[T,(x, y)+§ux, y)

+%[zf "+ F(2)IT, (%, y)Isin ax sin gy
13(b)

Solution expressions that totally satisfy the
above conditions in Eq. (14) are:

Up (X, y) =U cosax sin Ay 14(a)
v, (X, y,t) =vsin ax cosBy 14(b)
w (X,y) =wsin ax sin py 14(c)
v, (X, y)=wcosax sin By 14(d)
v, (X, y) =Csin ax cosPy 14(e)

where, 0<x<a; 0<y<b,a=m/a and p=n/b.
By substituting Eq. 14(a-e) into equations of
motion given by Eq. 11(a-e), and by simplifying
these expressions leads to a set of 5 algebraic
equations involving u, v, w, y, and ( and
solved using an inverse method. These algebraic
expressions arranged in matrix form:

[STIFFNESS ~ MATRIX]sxs{lUNKNOWNS]
51=[FORCE MATRIX] 5x1. (15)

The elements of the stiffness matrix are given in
the Appendix.
Unknowns of the above equations gives u, v, w,

vy, and C are used to computeU,,V,,W,,\,,
andy, .

4. Results and discussion

The proposed displacement field dependent on
‘r’, which is calculated to provide deflections
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and stresses of EGPs close to the three-
dimensional solutions [23]. It is noticed that the
present novel theory estimates the bending
results with minimum error with three-
dimensional solutions [35] at r=4.21. The
bending results of simply supported EGPs using
proposed HSDT for deflections and stresses
under mechanical and thermal loads are
presented. These numerical results are compared
with the three-dimensional solutions, the well-
known TPT, and HSDT, given by Zenkour [23]
and Mantari et al. [24, 25].

In the present study, the displacements and
normal and shear stresses, are found at their

maximum absolute values. The u and t,, are
evaluated at (0, b/2), while v and transverse shear
stresst,, are evaluated at (a/2, 0) and 7, is

evaluated at (0, 0). The normal stresses EW and

w is evaluated at (a/2, b/2).
All the results are given in the non-dimensional
quantities as follows:

0w W) 166
am 2
+
Emh3 h
_ 1
O-xx’ O-yy = 2 2 (O-xx’ ny)
ga E,x.T,a
2 + 2
h h
16(b)
- = _ 1 16(c)
Tz 2-yz - %_’_ EmamTza (sz’ z-yz)
h h
Ty =—7 10 2 Txy 16(d)
ga® 10E, «,T,a
he TR

The numerical results of the present HSDT are
presented for various (b/a) ratios and p. Fig. 2
shows the variation of the exponential function
in the thickness of an EGP and varies according
to the Eq. (17).

Exp{ p(% + %ﬂ 17)

Tables 1-3 present results of dimensionless
center deflections, a’/h = 2, 4, 10, respectively,
subjected to mechanical load.
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Fig. 2. Distribution of exponential function through

the thickness of EGP.
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Fig. 3(a). Influence of thermomechanical loads on W
of square EGM Plate (p=0.5) vs. a/h.
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Fig. 3(b). Infuence of thermo mechanical loads on W
of EGP (p=0.5, a/h=10) vs. a/b.
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Fig. 4(a). Influence of U on (a/h=2) rectangular plate
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Fig. 4(b). Influence of Von (a/h=2) rectangular
(b/a=6) plate.
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Fig. 4(c). Influence of thermoﬁmechanical loads on
U of rectangular (b/a=2) EGP (p=1.5, a/h=2).
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Fig. 4(d). Influence of thermomechanical loads on V

, on rectangular (b/a=2) EGP (p=1.5, a/h=2).

z/h

The present results without inclusion of the
thickness stretching effect, &, =0 are agreed

well to three dimensional solutions and the
solutions given by Mantari and Guedes Soares

[25] who considered g, #0. The present

theory results slightly under-estimates the 3D
solutions for larger values of (b/a) and slightly
over-estimates for smaller values of (b/a).
Mantari and Guedes Soares [25], also gave over-
estimated center deflections in which the
thickness stretching influence was not included.
However, TPT [23] and HPT [23] provide
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under-estimated center deflections even the
thickness stretching included. Therefore, the
present theory is more accurate in estimating the
center plate deflections. The dimensionless
center deflections decrease with increasing p and
decreasing b/a. This is due to the fact that the
Young’s modulus of the EGM plate increases.
Fig. 3(a) shows the influence of a/h on the
dimensionless center deflection of EGP (p=0.5).
The influence of thermal and mechanical loads
is considered. The deflection is more for plate
exposed to mechanical load only, while it
decreases with the inclusion of thermal load
(T2). The deflection behavior of the plate is quite
different and increases when the thermal load
(T3) isincluded. Also, it was found that the shear
deformation effect decreases for a/h >20. Fig.
3(b) shows the influence of b/a on the
dimensionless center deflection for EGP
(p=0.5). It is noted that, the center deflection
increases with the increase in aspect ratio at all
loading conditions, except g=0, T1=0, T2=1, and
T3=1. Also. It was observed that the inclusion of
T2=1 and T3=1 decreases the center plate
deflections.

The thickness distributions of in-plane (u,Vv)

displacements for p=0.1, 0.3, 0.5, 0.7, and 1 at
a/h= 2 and b/a=6 under mechanical load is
shown in Fig. 4(a-b). The in-plane displacements
increase from the top side to the bottom side of
the plate. At Z=-0.16, the in-plane
displacements are independent of the exponent,
p. Fig. 4(c-d) shows the influence of mechanical
and thermal loads on in-plane displacements of
the EGM plate through the thickness for p=1. 5,
at a/h=2 and b/a=2. The in-plane displacements
increase from the top side of the plate to the
bottom side of the plate due to the mechanical
load, g=0 or 1, T2=1, and T3=0. However, the
opposite can be found when q=0 and T2=T3=1.
The figures accentuate the pronounced influence
took part by the different thermal and bending
loads on the analyzed in-plane displacements.

Tables 4 to 6 present results of Oy of square and
rectangular EGPS, a/h: 2, 4, 10. The results for
the Eyy increase with increasing p, while it

decreases with b/a. The present theory results
slightly under-estimating the normal stresses

Oy for rectangular plates at a/h:2 and 4, and for

square plates at a/h:4, slightly over-estimating.
The supremacy of the present novel theory
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against TPT [23], HPT [23], and Mantari et al.
[24] can be noticed.

The oy, is compressive at and beneath the mid-

plane, and the tensile over the mid-plane for
p=0.1, 0.3, 0.5, 0.7, and 1 at a/h= 4 and b/a=2
under mechanical load is shown in Fig. 5 (a). For
the various chosen p, the plate with p=1 gives the
maximum tensile stress and compressive stress
at the upper side and lower side of the plate,
respectively. At Z=-0.275, the in-plane
compressive stresses and at Z=0.31, the in-
plane tensile stresses are independent of
exponent, p. Fig. 5(b) shows the influence of

mechanical and thermal loads on Oy of EGM

plate through the thickness for p=1.5 at a/h=2
and b/a=2. The figure emphasis, in-plane
stresses are greatly influenced by different
thermal and mechanical loads.

Table 7 presents the results of &, of square and

rectangular EGM plates at a/h:10. The results for
Oy increases with increase in p and decreases

in b/a. The present HSDT results are in very
good agreement with those reported by Mantari
et al. [24 , 25]. From Fig. 6(a-b) a similar
inference can be drawn from the distribution of
o, - F19. 7(a) shows the distribution of in-plane

shear stress, fxy along the thickness of the EGPs,

alh= 2, 4 10 for p=0.5 and b/a=2 under
mechanical load. The in-plane shear stresses, 7,

, are compressive over the middle plane of the
plate and tensile at and below the middle plane
of the plate.

Note that for different a/h ratios chosen, the very
thick plate, a/h=2 yield maximum tensile stress
and minimum compressive shear stress at the
bottom surface and top surface of the plate,
respectively. It is important to observe that, the
shear stress varies slightly, as the a/h increases
through the thickness direction. AtZ = +0.34,

the 7, are independent of the thickness of the

plate. The distribution of 7, through the

thickness direction of the EGM plate under
mechanical and thermal loads is shown in Fig.
7(b). It is noticed that, the stresses are
independent of the type of load at Z=
0.17 and 0.21.



Table 1. Comparison of W for several EGPs, a/h=2.

b/a Theory €22 n=0.1 n=0.3 n=0.5 n=0.7 n=1 n=15
6 3-D[23] 1.63774  1.48846  1.35184  1.22688 1.05929 0.82606
Present 0 1.63783 148131 1.33916 1.21009 1.03853 0.802941
Mantari et al.[25] #0 1.63654 1.47953 1.33644 1.20618 1.03325 0.79387
Manteri et al.[24] 0 1.73465 156884  1.41822  1.28145 1.10032 0.84996
TPT [23] #0  1.62939 147309  1.33066  1.20101 1.02823 0.79056
HPT [23] #0 1.54777 1.39964 1.26493 1.14249 0.97956 0.7556
5 3-D[23] 1.60646 1.46007 1.32607 1.20349 1.03907 0.81024
Present 0 1.61009  1.45623  1.31649  1.18962 1.02097  0.789399
Mantari et al.[25] #0 1.60532 1.4513 1.31094 1.18315 1.01352 0.77867
Manteri et al.[24] 0 1.70246 153972 139188  1.25762 1.07981 0.83401
TPT [23] #0 1.59825 1.44493 1.30522 1.17804 1.00856 0.7754
HPT [23] #0 1.51991 1.37444 1.24214 1.12188 0.96184 0.74184
4 3-D[23] 1.55146 1.41013 1.28074 1.16235 1.00352 0.78241
Present 0 1.5611 141193  1.27645  1.15345  0.989959  0.765472
Mantari et al.[25] #0 1.55042 1.40166 1.2661 1.14267 0.97884 0.75195
Manteri et al.[24] 0 1.64584 1.48849 1.34553 1.21569 1.04374 0.80596
TPT [23] #0 1.54348 1.39541 1.26048 1.13764 0.97395 0.74874
HPT [23] # 147089 133009  1.20201  1.08559 0.93065 0.71762
3 3-D[23] 1.44295 1.3116 1.19129 1.08117 0.93337 0.7275
Present 0 1.46363  1.32378  1.19677  1.08147  0.928233  0.717834
Mantari et al.[25] #0 1.4421 1.30373 1.17761 1.06279 0.91041 0.69925
Manteri et al.[24] 0 153405 1.38735  1.25402  1.13291 0.97254 0.7506
TPT [23] #0 1.43542 1.29771 117221 1.05795 0.90567 0.69615
HPT [23] #0 1.37394 1.24238 1.2269 1.01386 0.86898 0.66977
2 3-D[23] 1.19445 1.08593 0.9864 0.8952 0.77266 0.60174
Present 0 1.23607  1.11797  1.01074 0.913395 0.784033  0.606451
Mantari etal.[25] #0  1.19408  1.07949  0.97503 0.8799 0.75377 0.57862
Manteri et al.[24] 0 1.2776 1.15533 1.04413 0.94307 0.80929 0.62377
TPT [23] #0 1.18798 1.07399 0.97009 0.87548 0.74936 0.57578
HPT [23] #0 1.1508 1.04052 0.94012 0.84878 0.72712 0.55975
1 3-D[23] 0.57693 052473  0.47664 0.4324 0.37269 0.28904
Present 0 0.63847  0.577441 0.522 0.47166 0.404741  0.312871
Mantari et al.[25] #0 0.57789 0.5224 0.47179 0.42567 0.36485 0.27939
Manteri et al.[24] 0 0.63625 057517  0.51948  0.46874 0.40178 0.30791
TPT [23] #0 0.57308 0.51806 0.46788 0.42216 0.36117 0.27712
HPT [23] #0 0.58586 0.52955 0.47814 0.43127 0.36871 0.28246
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Table 2. Comparison of W for several EGPs, a/h=4.

b/a Theory €22 n=0.1 n=0.3 n=0.5 n=0.7 n=1 n=15
6 3-D[23] 1.1714 1.06218 0.96331 0.87378 0.75501  0.59193
Present 0 1.16801 1.05715 0.95706  0.86666  0.74712  0.58377
Mantari et al.[25] #0 1.17033 1.05825 0.95628 0.86359  0.74032  0.57128
Manteri et al.[24] 0 1.19202 1.07885 0.97667  0.88437  0.76228  0.59545
TPT [23] #0 1.16681 1.05509 0.95345 0.86107 0.73821  0.56969
HPT [23] #0 1.00649 0.91087 0.82448 0.7464 0.64306  0.50178
5 3-D[23] 1.14589 1.03906 0.94236  0.85478  0.73859  0.57904
Present 0 1.14315 1.03465 0.93668  0.84821 0.73120 0.57133
Mantari et al.[25] #0 1.14484 1.0352 0.93545 0.84478 0.72419  0.55882
Manteri et al.[24] 0 1.16628 1.05555 0.95557  0.86525  0.74578  0.58253
TPT [23] #0 1.1414 1.0321 0.93268  0.84231 0.72212  0.55726
HPT [23] #0 0.98508 0.8915 0.80694 0.7305 0.62935  0.49105
4 3-D[23] 1.10115 0.99852 0.9056 0.82145  0.70979  0.55643
Present 0 1.0995 0.99513 0.90091 0.81581 0.70326  0.54948
Mantari et al.[25] #0 1.10013 0.99477 0.89891  0.81178  0.69589  0.53696
Manteri et al.[24] 0 1.12113 1.01469 0.91856  0.83172 0.71685  0.55987
TPT [23] #0 1.09682 0.9918 0.89625  0.80941 0.6939 0.53546
HPT [23] #0 0.94753 0.8575 0.77615  0.70262  0.60529  0.47222
3 3-D[23] 1.01338 0.91899 0.8335 0.75606  0.65329  0.51209
Present 0 1.01369 0.91746 0.83059  0.75212 0.64833  0.50652
Mantari et al.[25] #0 1.01243 0.91546 0.82724  0.74704  0.64037  0.49408
Manteri et al.[24] 0 1.03254 0.9345 0.84594  0.76593  0.66008  0.51541

TPT [23] #0 1.00938 0.91272 0.82479  0.74486  0.63854 0.4927
HPT [23] #0 0.87379 0.79076 0.71571  0.64787  0.55806  0.43525

2 3-D[23] 0.81529 0.73946 0.67075 0.60846  0.52574 0.412
Present 0 0.819111 0.741343 0.67111 0.60767  0.52375  0.40908
Mantari et al.[25] #0 0.81448 0.73647 0.66547  0.60093  0.51508  0.39732
Manteri et al.[24] 0 0.83246 0.75338 0.68192 0.61734 0.53188  0.41503

TPT [23] #0 0.81202 0.73425 0.6635 0.59917  0.51361 0.3962
HPT [23] #0 0.707 0.63979 0.57901  0.52405 0.45126  0.35169
1 3-D[23] 0.349 0.31677 0.28747  0.26083  0.22534  0.18054
Present 0 0.35522 0.32145 0.29091 0.26330 0.22674 0.17674
Mantari et al.[25] #0 0.3486 0.31519 0.28477 0.2571 0.22028  0.16972
Manteri et al.[24] 0 0.36017 0.32589 0.29485 0.26676  0.22952  0.17854
TPT [23] #0 0.34749 0.31419 0.28388  0.25631  0.21961  0.16922
HPT [23] #0 0.31111 0.28146 0.25461  0.23027 0.198 0.15377
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Table 3. Comparison of W for several EGPs, a/h=10.
b/a Theory gzz n=0.1 n=03 n=05 n=0.7 n=1.0 n=15 n=2.0 n=25 n=3.0
6 Present 0 1.035 09370 0.8488 0.7694 0.6645 0.5216 0.4101 0.3223 0.2530
Mantari et al.[25] 75 1.0354 0.9363 0.8462 0.7644 0.6558 0.5063 0.3913 0.3018 0.2324
Manterietal.[24] 0 1.0388 0.9405 0.852 0.7723 0.667 0.5236 0.4115 0.3235 0.2539
TPT [23] 75 1.0321 0.9333 0.8436 0.7621 0.6538 0.5054 0.3901 0.3006 0.2314
5 Present 0 1.0112 0.9155 0.8293 0.7517 0.6493 0.5096 0.4006 0.3149 0.2471
Mantari et al.[25] 75 1.0115 0.9147 0.8267 0.7468 0.6406 0.4952 0.3823 0.2948 0.2271
Manterietal.[24] 0 10.149 0.9189 0.8324 0.7545 0.6516 0.5115 0.402 0.316 0.248
TPT [23] ;Oﬁ 1.0083 0.9118 0.8241 0.7445 0.6387 0.4938 0.381 0.2937 0.2261
4 Present 0 09694 08777 0.7951 0.7207 0.6225 0.4886 0.3841 0.3019 0.2369
Mantari et al.[25] ;5 0.9696 0.8768 0.7925 0.7159 0.6141 0.4747 0.3664 0.2826 0.2177
Manterietal.[24] 0 0.973 0.8809 0.798 0.7233 0.6247 0.4903 0.3854 0.3029 0.2377
TPT [23] ;5 0.9665 0.8741 0.79 0.7137 0.6123 0.4733 0.3653 0.2815  0.2167
3 Present 0 0.8878 0.8037 0.7281 0.6599 0.5700 0.4474 0.3517 0.2765 0.21699
Mantari et al.[25] ;(; 0.8877 0.8027 0.7255 0.6554 0.5622 0.4346 0.3355 0.2587 0.1992
Manterietal.[24] 0 0.8909 0.8066 0.7307 0.6622 0.572 0.4489 0.3528 0.2773 0.2176
TPT [23] 75 0.8849 0.8002 0.7233 0.6534 0.5605 0.4333 0.3344 0.2577 0.1983
2 Present 0 0.7043 0.6376 0.5776 0.5235 0.4522 0.3549 0.2789 0.2192 0.1720
Mantari et al.[25] ;é 0.7037 0.6364 0.5752 0.5196 0.4457 0.3445 0.2659 0.205 0.1579
Manterietal.[24] 0 0.7066 0.6397 0.5795 0.5252 0.4536 0.356 0.2797 0.2198 0.1724
TPT [23] 75 0.7015 0.6344 0.5734 0518 0.4444 0.3435 0.2651 0.2043 0.1572
1 Present 0 0.2806 0.2540 0.2301 0.2085 0.1800 0.1412 0.1109 0.0871 0.0683
Mantari et al.[25] 75 0.2799 0.2531 0.2287 0.2066 0.1772 0.137 0.1057 0.0814 0.0627
Manterietal.[24] 0 0.2816 0.255 0.2309 0.2093 0.1807 0.1417 0.1112 0.0873 0.0684
TPT [23] 75 0.279  0.2523 0.228 0.206  0.1767 0.1366 0.1053 0.0811 0.0624

The g, in different EG rectangular plates, p=

0.1,0.3,0.5,0.7,1, 1.5, 2, 2.5, and 3 for a/h=10
is presented in Table 8. From this table, it is

observed that the stress, Ox decreases with both
the increase in the exponent, p, and the decrease
in the aspect ratio, b/a. The present stress results
are very close to those of Manteri et al. [24, 25],
but TPT [23] over-estimating the stresses. Fig.

8(a) shows the distribution of shear stresses &,

, through the thickness of square EGPs, p= {0.1,
0.3, 0.5, 0.7, 1}, for a/h=10.

From Fig. 8(a), it can be noticed that the stresses
are maximum at the mid-plane and zero at the
upper side and lower side of the plate. The
stresses decrease with the increase in the
exponent, p, below the mid-plane and increases
at and above the mid-plane. The effect of aspect
ratio on stress,&yZ distributions along the
thickness of the EGP for a/h: 2 at p=0.5 is
shown in Fig 8(b). The stresses are zero at the
lower side and upper side of the plate and

maximum at the mid-plane. The stresses
decrease with the increase in b/a.
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Table 4. Comparison of Eyy for EGPs, a/h=2.
b/a Theory €2z n=0.1 n=0.3 n=0.5 n=0.7 n=1 n=1.5
6 3-D[23] #0 0.29429 0.31008 0.32699 0.34508 0.37456 0.43051
Present 0 0.22421 0.24048 0.25775 0.27608 0.30568 0.36116
Mantari et al.[25] #0 0.27628 0.29544 0.31592 0.3378 0.37374 0.44163
Manteri et al.[24] 0 0.21871 0.23447 0.25122 0.269 0.29804 0.34981
TPT [23] #0 0.29119 0.31184 0.33385 0.35731 0.39547 0.46786
HPT [23] #0 0.31192 0.33462 0.35873 0.38433 0.42573 0.50345
5 3-D[23] #0 0.29674 0.31277 0.32993 0.34829 0.37821 0.435
Present 0 0.22808 0.24464 0.26223 0.28089 0.31105 0.36759
Mantari et al.[25] #0 0.27892 0.29833 0.31905 0.34119 0.37755 0.44614
Manteri et al.[24] 0 0.22185 0.23784 0.25484 0.27288 0.30236 0.35485
TPT [23] #0 0.29353 0.31439 0.33662 0.36032 0.39884 0.47187
HPT [23] #0 0.31327 0.33607 0.3603 0.38604 0.42764 0.50573
4 3-D[23] #0 0.30084 0.31727 0.33486 0.35368 0.38435 0.44257
Present 0 0.23473 0.2518 0.26993 0.28918 0.32029 0.37868
Mantari et al.[25] #0 0.28335 0.30317 0.32431 0.3469 0.38394 0.45373
Manteri et al.[24] 0 0.22715 0.24354 0.26096 0.27945 0.30968 0.36337
TPT [23] #0 0.29743 0.31864 0.34124 0.36533 0.40446 0.47857
HPT [23] #0 0.31543 0.33842 0.36285 0.38878 0.43072 0.50943
3 3-D[23] #0 0.30808 0.32525 0.34362 0.36329 0.39534 0.45619
Present 0 0.24721 0.26524 0.28441 0.30477 0.33772 0.39965
Mantari et al.[25] #0 0.29122 0.31177 0.33369 0.35707 0.39537 0.46732
Manteri et al.[24] 0 0.23675 0.25387 0.27206 0.29138 0.32297 0.37881
TPT [23] #0 0.30421 0.32606 0.34933 0.3741 0.41432 0.49035
HPT [23] #0 0.3189 0.3422 0.36695 0.39323 0.43572 0.51545
2 3-D[23] #0 0.31998 0.33849 0.35833 0.37956 0.41417 0.47989
Present 0 0.27199 0.29198 0.31327 0.33594 0.37270 0.44207
Mantari et al.[25] #0 0.30422 0.32613 0.34945 0.37427 0.41483 0.49052
Manteri et al.[24] 0 0.25385 0.27231 0.29193 0.31276 0.3469 0.40636
TPT [23] #0 0.31463 0.33758 0.362 0.38796 0.43003 0.50925
HPT [23] #0 0.32223 0.34592 0.37109 0.39782 0.44102 0.52203
1 3-D[23] #0 0.31032 0.32923 0.34953 0.37127 0.40675 0.47405
Present 0 0.29301 0.31530 0.33915 0.36467 0.40634 0.48585
Mantari et al.[25] #0 0.29244 0.31468 0.33826 0.36325 0.40405 0.47848
Manteri et al.[24] 0 0.25215 0.271 0.29102 0.31227 0.34773 0.40347
TPT [23] #0 0.29554 0.31811 0.34208 0.3675 0.40851 0.48508
HPT [23] #0 0.28882 0.31072 0.33398 0.35866 0.39852 0.47305
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Table 5. Comparison of Eyy for EGPs, a/h=4.

b/a Theory €2z n=0.1 n=0.3 n=0.5 n=0.7 n=1 n=15
6 3-D[23] #0  0.21814 0.23211 0.24699 0.26284 0.28857 0.33725
Present 0 0.20242 0.21652 0.23149 0.24740 0.27315 0.32165
Mantari et al.[25] #0 0.21265 0.22547 0.23934 0.2544 0.27953 0.32937
Manteri et al.[24] 0 0.20097 0.21493 0.22976 0.24553 0.27105 0.31917

TPT [23] #0  0.23686 0.25204 0.2683 0.28574 0.31441 0.3699
HPT [23] #0 0.2817 0.30133 0.32219 0.34435 0.38024 0.44786
5 3-D[23] #0 0.2206 0.23476 0.24984 0.26591 0.29199 0.34133
Present 0 0.20529 0.21959 0.23478 0.25092 0.27705 0.32626
Mantari et al.[25] #0  0.21524 0.2283 0.24241 0.25772 0.28323 0.33373
Manteri et al.[24] 0 0.20366 0.21781 0.23285 0.24883 0.2747 0.32346
TPT [23] #0 0.23912 0.2545 0.27097 0.28863 0.31764 0.37371
HPT [23] #0 0.28261 0.30231 0.32323 0.34547 0.38148 0.44934
4 3-D[23] #0 0.2247 0.23918 0.2546 0.27103 0.2977 0.34816
Present 0 0.21012 0.22476 0.24032 0.25685 0.28361 0.33402
Mantari et al.[25] #0  0.21957 0.23302 0.24754 0.26327 0.28943 0.34105
Manteri et al.[24] 0 0.20818 0.22264 0.23802 0.25435 0.28081 0.33066
TPT [23] #0  0.24286 0.25858 0.27539 0.29342 0.32299 0.38004
HPT [23] #0  0.28399 0.30379 0.32483 0.34719 0.38338 0.45159
3 3-D[23] #0  0.23188 0.24692 0.26295 0.28002 0.30775 0.36021
Present 0 0.2188 0.23406 0.25027 0.26751 0.29542 0.34802
Mantari et al.[25] #0 0.22721 0.24137 0.25663 0.27312 0.30044 0.35404
Manteri et al.[24] 0 0.21619 0.23122 0.2472 0.26417 0.29166 0.34346
TPT [23] #0  0.24931 0.26563 0.28307 0.30174 0.3323 0.39106
HPT [23] #0  0.28588 0.30583 0.32702 0.34954 0.38601 0.45471
2 3-D[23] #0 0.24314 0.25913 0.27618 0.29434 0.32385 0.37968
Present 0 0.23376 0.25011 0.26748 0.28596 0.31590 0.37238
Mantari et al.[25] #0  0.23953 0.25497 0.27154 0.28936 0.3187 0.37562
Manteri et al.[24] 0 0.22943 0.24542 0.2624 0.28045 0.30967 0.36473
TPT [23] #0 0.25878 0.27609 0.29456 0.31428 0.34644 0.40788
HPT [23] #0 0.28539 0.30534 0.32655 0.34908 0.38556 0.45428
1 3-D[23] #0 0.22472 0.23995 0.25621 0.27356 0.30177 0.35885
Present 0 0.22527 0.24121 0.25818 0.27625 0.30557 0.36100
Mantari et al.[25] #0 0.22372 0.23907 0.25544 0.27291 0.30137 0.35555
Manteri et al.[24] 0 0.21636 0.23157 0.24774 0.26492 0.29273 0.34508
TPT [23] #0  0.23457 0.25098 0.26842 0.28698 0.31706 0.37386
HPT [23] #0 0.2408 0.25783 0.27593 0.29515 0.32627 0.38482
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Table 6. Comparison of Eyy for EGPs, a/h=10.
b/a Theory ez n=0.1 n=0.3 n=0.5 n=0.7 n=1.0 n=1.5 n=2.0 n=2.5 n=3.0
6 Present 0 01962 0.20969 0.2240 0.2392 0.2638 0.3103 0.3646 0.4279  0.5017
Mantari et al.[25] #0 0.1954  0.2065 0.2185  0.2317 0.254 0.2988 0.3552 0.4255 0.5115
Manteri et al.[24] 0 0.198 0.2094 0.2237 0.2389 0.2635 0.31 0.3642 0.4275 0.5011
TPT [23] #0  0.2223 0.236 0.2507 0.2665 0.2926 0.3435 0.4054 0.4805 0.5708
5 Present 0 0.1988 0.2124 0.2269 0.2423 0.2673 0.3144 0.3695 0.4336  0.5083
Mantari et al.[25] #0  0.198 0.2093 0.2216 0.235 0.2577 0.3031 0.3602 0.4312 0.5179
Manteri et al.[24] 0 0.1985 0.2122 0.2267 0.2421 0.267 0.314 0.369 0.4331  0.5077
TPT [23] #0  0.2245 0.2385 0.2534 0.2694 0.2958 0.3473 0.4098 0.4855 0.5764
4 Present 0 0.2031 0.2171 0.2319 0.2476 0.2732 0.3213 0.3775 0.4431 0.5195
Mantari et al.[25] #0  0.2023 0.214 0.2267 0.2406 0.2638 0.3104 0.3686  0.4407 0.5282
Manteri et al.[24] 0 0.2028 0.2168 0.2316  0.2473 0.2728 0.3208 0.377 0.4424  0.5187
TPT [23] #0  0.2283 0.2425 0.2578 0.2742 0.3012 0.3535 0.417 0.4937  0.5857
3 Present 0 0.2108 0.2252 0.2406 0.2570 0.2835 0.3335 0.3918 0.4599 0.5392
Mantari et al.[25] #0  0.2099 0.2224 0.2358  0.2504 0.2748 0.3233 0.3835 0.4575 0.5472
Manteri et al.[24] 0 0.2104 0.2248 0.2402  0.2565 0.2829  0.3328 0.391 0.4589 0.538
TPT [23] #0  0.2347 0.2495 0.2654 0.2825 0.3104 0.3645 0.4296 0.508 0.6016
2 Present 0 0.223 0.2385 0.2548 0.2722 0.3002 0.3532 0.4151 0.4873 0.5713
Mantari et al.[25] #0 0.2223 0.236 0.2507  0.2666 0.293 0.3447 0.4079 0.4846 0.5768
Manteri et al.[24] 0 0.2225 0.2378 0.2541  0.2713 0.2993 0.3521 0.4137 0.4855  0.5692
TPT [23] #0  0.2441 0.2599 0.2768 0.2949 0.3244 0.381 0.4486 0.5291 0.6246
1 Present 0 0.2075 0.2218 0.2370 0.2532 0.2794 0.3288 0.3865 0.4539 0.5324
Mantari et al.[25] #0  0.2063 0.2199 0.2344  0.2499 0.2753 0.324 0.3819 0.4506  0.5317
Manteri et al.[24] 0 0.2062 0.2204 0.2355 0.2515 0.2774 0.3264 0.3835 0.4502 0.5278
TPT [23] #0  0.2196 0.2345 0.2503 0.2671  0.2944 0.346 0.4065 0.4775 0.5603
Table 7. Comparison of &, for EGPs, a/h=10.
b/a Theory gz n=0.1 n=0.3 n=0.5 n=0.7 n=1.0 n=1.5 n=2.0 n=2.5 n=3.0
6 Present 0 0.6036 0.6450 0.6891 0.7359 0.8117 0.9548 112181 1.3166  1.54338
Mantari et al.[25] #0 0.6014 0.6426 0.6864 0.7329 0.8084 0.951 1.1177 1.3124 1.9394
Manteri et al.[24] 0 0.6029 0.6443 0.6882 0.635 0.8107 0.9536 1.1204 1.315 1.5415
TPT [23] #0 0.6271  0.6707 0.717 0.7661  0.8452 0.9935 1.1651 1.3637 1.5935
5 Present 0 0.5917 0.6323 0.6755 0.7214  0.7958 0.9360 1.0998 1.2908 15131
Mantari etal.[25] #0 0.5895 0.6299 0.6727 0.7184 0.7923 0.9321 1.0955 1.2865 1.5091
Manteri et al.[24] 0 0.591 0.6315 0.6746  0.7205 0.7949 0.9347 1.0982 1.289 15111
TPT [23] #0 0.6149 0.6577 0.7031 0.7512 0.8287 0.7941 1.1424 1.3372 1.5626
4 Present 0 0.5709 0.6101 0.6518 0.6960 0.7678 0.9031 1.0611 1.2455 1.4600
Mantari et al.[25] #0 05686 0.6075 0.6488 0.6928 0.7641 0.8989 1.0566 1.241 1.456
Manteri et al.[24] 0 0.57 0.6092  0.6508 0.695 0.7666 0.9016 1.0594 1.2434 1.4576
TPT [23] #0 05935 0.6348 0.6785 0.6249  0.7998 0.9401 1.1025 1.2907 1.5084
3 Present 0 05298 05662 0.6049 0.6460 0.7126 0.8383 0.9850 1.1562 1.3554
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Mantarietal.[25] #0 05275 05635 0.6018 0.6425 0.7085 0.8335 0.98 1.1514 1.3514
Manteri et al.[24] 0 05288 05651 0.6037 0.6447 0.7112 0.08365 0.9828 1.1536 1.3523

TPT [23] #0 05514 05896 0.6302 0.6733 07427  0.873 1.024 1199  1.4017
2 Present 0 04363 04663 04981 0.5320 0.5869 0.6904  0.8113 09524 1.11679
Mantari etal.[25] #0  0.434 04634 0.4947 0528 05822 0.6849  0.8056  0.9473  1.113
Manteri et al.[24] 0 0.435 0.4649 0.4966  0.5303 0.585 0.6881 0.8085 0.949 1.1125
TPT [23] #0 0.4552  0.4867 0.52 0.5554  0.6126 0.7201 0.8449 0.9898 1.158
1 Present 0 0.2075 0.2218 0.2370 0.2532 0.2794 0.3288 0.3865 0.4539 0.5324
Mantari etal.[25] #0 0.2063 0.2199 0.2344 0.2499 0.2753  0.324 0.3819  0.4506  0.5317
Manterietal.[24] 0 02062 0.2204 0.2355 0.2515 0.2774 0.3264  0.3835  0.4502  0.5278
TPT [23] #0 02196 0.2345 02503 0.2671 0.2944  0.346 0.4065  0.4775  0.5603
Table 8. Comparison of &, for EGPs, a/h=10.
b/a Theory ez n=0.1 n=0.3 n=0.5 n=0.7 n=1.0 n=1.5 n=2.0 n=2.5 n=3.0
6 Present 0 0.4676  0.4667 0.4650 0.4625  0.4571 0.4442  0.4267 0.4048 0.37953
Mantari et al.[25] #0 0.4634  0.4626 0.461 0.4586 0.4536 0.4416  0.4253  0.4065 0.3845
Manteri et al.[24] 0 0.4633 0.4625 0.4069 0.4585  0.4536 0.4415 0.4252 0.4064 0.3842
TPT [23] #0 04776 04769 0.4753 0.473 0.4681 0.4564  0.4405 0.4209 0.3981
5 Present 0 04621 04613 04596 04571 04518 0.4390 0.4217 04001 0.37519
Mantari etal.[25]  #0 0.4579 0.4571 0.4556 0.4532  0.4483  0.4364 0.4203 0.4017 0.38
Manteri et al.[24] 0 04579 04571 04555 0.4531 04482 04363 04202 0.4016  0.3797
TPT [23] #0  0.472 04713 04697 04674  0.4626 0.451 04353 04159  0.3935
4 Present 0 0.4524 0.4516 0.4500 0.4475  0.4423 0.4298 0.4128 0.3918 0.36734
Mantari et al.[25] #0 04482 0.4475 0.4459 0.4436 0.4388 0.4271 0.4114 0.3933 0.372
Manteri et al.[24] 0 04482 04474 04458 0.4435 04387 04271 04113 0.3931  0.3717
TPT [23] #0 0462 04613 04598 04575 04528  0.4415 0.4261 0.4071  0.3851
3 Present 0 04328 04320 04304 04281 04231 04112 0.3949 0.3748 0.35145
Mantari etal.[25]  #0 0.4286  0.4279 0.4264 04242 04196 0.4084 0.3934 0.3761  0.3558
Manteri et al.[24] 0 04285 04278 04263 04241 04195 04084 0.3933 0376  0.3555
TPT [23] #0 04418 04411 04396 04375 0433 04221 0.4074 0.3893  0.3686
2 Present 0 0.3850 0.3843 0.3829  0.3808 0.3764 0.3658 0.3514  0.3335 0.3128
Mantari et al.[25] #0 0.381 0.3803 0.379 0.377 0.373 0.363 0.3497 0.3344 0.3165
Manteri et al.[24] 0 0.3809 0.3803 0.3789 0.377 0.3729 0.363 0.3496  0.3343 0.3162
TPT [23] # 03927 0.3921 0.3908 0.3889 0.3849 0.3752  0.3621 0.346 0.3273
1 Present 0 02411 0.2407 0.239 0.2385 02358  0.2292 0.2202 0.2091  0.19611
Mantari etal.[25] #0  0.238  0.2376 0.2368 0.2356  0.233  0.2268 0.2185 0.2094  0.1985
Manteri et al.[24] 0 0238 02376 02368 02356 0.233  0.2268 0.2184 0.2093  0.1983
TPT [23] #0 02454 0245 02442 0243 02405 0.2344 0.2263 0.2162  0.2045
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Fig. 5(a). Distribution of Eyy through the thickness
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Fig. 5(b). Influence of thermo mechanical loads on
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5. Conclusions

The thermomechanical behavior of EGPs is
presented based on the new HSDT. The elastic
and thermal modulus of the EGPs are changed
exponentially along the thickness of the plate.
Hamilton’s principle is used to get the equations
of motion. Closed-form results are obtained for
the EGPs under bi-sinusoidal thermomechanical
loads with all sides are simple support using the
inverse method. From the numerical results, it
can be inferred that the present novel theory
without including the stretching effect estimates
the displacements and stresses of the EGPs
accurately with the well-known HPT [23], TPT
[23], and Mantari et al. [24]. The gradients or
inhomogeneities in materials play a vital role in
estimating the bending behavior of the EGPs.
The change of elastic modulus and thermal
modulus in the thickness of the plate
exponentially can avoid interface problems, and
hence the stress variation is smooth. The
analytical formulations and solutions presented
in this paper should help in extending
investigations and should provide the engineers
with the potential for the design and
development of exponentially graded plates for
advanced engineering applications.
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Appendix

S, = Ay’ + Ay B

Sp = (Alz + Ay )aﬂ;

S =—Bua® (B, +2By, jaB?;
S10=(f "By +Eyy Jo? +(f "By + Eyy )%
S;s = (f By, +Epy + f By + Egg)af;
Sy = (Ay + Ay)ap;

Sp = A22ﬁ2 + A330(2;

Sy =—(By + 2833)052,3_ B,/

Sye =(f By +Ep + f "By +Egp)arfs;

Sy = (f*Bss +Eg ’ +(f*Bzz + Ezz)ﬂz'

Sq1 =By’ + (B, +2By;)af’;
Sy = By8° +(By, + 2By )a’ f;

Sy = _Dll(a4 Jrﬁll)_(ZDQ +4D33)a2ﬂ2;

Sy =(Dy, f T+ I:11)61‘3
+(D,, f"+F, +2f D, + F,)ap?;
Sy = (D, f "+ Fzz)ﬂs
+(D,f +F,+2f Dy, + Fp)a’B;

Su=(Byf T+ Ell)az +(By f T+ E33)ﬂ2;

S, =(B,f +f By +E, +Ey)ap;
S, :—(f*D11+ Fll)a?’

—(f'D, +2f Dy, + F, + 2F,)af;
S, =(f’D,+2f F,+H,)a’

+(f Dy +21 Fyy + Hyy)P2
+J11f*2+K11f*+L11f*+M11

S, =(f’Dy,+2f F, +Hy,+Hyg
+ 17D, + 2 Fy)ap ,
Se, =(B,f + f' By, +E, +Eg)ap;

S52 = (BSS f ) + E33)a2 + (Bllf* + Ell)ﬁz;

S53 = _(f*Dll + Fll)ﬁs
—(f'D,+2f Dy +F, +2F,)a’B;
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