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applications. In engineering problems, heat
transfer studies are significant due to their effects
on the performance of devices such as heat dries,

1. Introduction

In recent decades, scientists applied theoretical

methods for solving problems with a simple
domain. In fact, the methods are reliable
techniques for obtaining the on-hand solution for
various scientific problems. Mathematicians
then tried to apply the methods for real work

food industries, and microprocessors. Since
nonlinear terms exist in most engineering
problems, finding reasonable results is crucial
for engineering applications. Hence, analytical
methods were extensively employed. Among the
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semi-exact approaches that applied linearization
or discretization, the Adomian decomposition
method (ADM) is an efficient approach, and
several types of researche are done to improve
its capability [1, 2]. The main gain of this method
is that it can present analytical approximation for
a relatively widespread type of nonlinear
equations without specific considerations such
as linearization, closure  approximation,
perturbation, or discretization approaches.
Dissimilar to the conventional approaches, i.e.,
small perturbation and delicate nonlinearity,
which modify the nature of the problem due to
adjustments, ADM presents a reliable resolution
of the engineering problems without any
explanation. Therefore, realistic outcomes are
obtained by this approach. Various authors have
used this technique for solving problems of fluid
dynamics. Sheikholeslami et al. [3] used the
ADM to study the impact of nanoparticle and
magnetic fields on the Jeffery-Hamel flow. They
displayed that growing Hartmann number will
reduce backflow. Similarly, their results
demonstrated that momentum boundary layer
thickness rises when nanoparticle volume
fraction surges. Jafari et al. [4] offered a
modified ADM to resolve nonlinear equations
that generated sequences of results with quicker
convergence than the series gained by the normal
ADM. Allen and Syam [5] examined non-
homogeneous and traditional Blasius equations.
Hashim [6] applied the ADM for resolving 4th
order equations of boundary value problems and
the Blasius equation [7]. Arslanturk [8] reviewed
this method on the performance of convective
straight fins when their thermal conductivity is
temperature-dependent. In fact, previous studies
just focused on the main theoretical aspects of
the problem. Since the main purpose of the
analytical studies is to present guidelines for the
initial results, it is crucial to find a reasonable
outcome for the engineering [9-15].

ADM similarly has been applied by numerous
scholars to solve an extensive range of
engineering applications such as porous media
and fluid flow domain [16-21] and other
nonlinear problems [22-27]. In fact, nonlinear
problems are widely considered by various
researchers to find reliable results [28-33].
Among various topics, heat transfer problems,
due to presence of nonlinear terms, are highly
considered for evaluation of these approaches
[34-39].
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The investigation of the transient enfolding of a
viscous fluid with constant density between two
parallel plates, with respect to time, has been
considered as one of the most significant
investigations due to its applications [40, 41], for
example, hydrodynamical machines, lubrication
system and injection molding. The primary study
on the squeezing flow under lubrication
estimation was stated by Stefan [42]. Lately,
because of their requests in numerous divisions
of engineering applications, analysis of flow
parameters has been improved. Meanwhile,
parametric flow analysis of chemical reaction
plays a vigorous effect in the chemical process
design. The heat transfer properties in the
squeezed flow within a porous domain are
widely studied by Mahmood et al. [43]. The
result of transient chemical reaction on the
hydrodynamic of a viscous fluid is measured by
Abd-El Aziz [44]. In the other works, Domairry
and Aziz [45] studied the magnetohydrodynamic
squeezing flow of a viscous fluid between
parallel disks. Several researchers applied these
methods for non-Newtonian fluid and MHD
problems. They found that these approaches
present reliable results [46-51].

The key purpose of the present work is to use the
ADM to obtain reasonable answers for nonlinear
differential equations [51-55]. This work
initially explains the ADM for the solving of the
nonlinear equations [56-61]. Then, a model is
presented and the definitions and boundary
conditions are presented. Next, the non-
dimension process of equations are briefly
explained. Among various complicated
problems, the problem of mass and heat transfer
within the transient squeezing flow between
parallel surfaces is significant. In this work, the
concentration and temperature profiles are
compared and the effect of the important
parameters on the hydrodynamic and flow
features is comprehensively explained.

2. Equations and units

In solving each engineering problems, finding
the governing equations and recognition of the
main parameters are the main step for solving the
problem. In this work, the heat and mass transfer
analyses of the transient 2-dimensional
squeezing flow are chosen for the evaluation of
this method [62-65]. In this domain, it is
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assumed that the fluid is incompressible and
viscous between the infinite parallel surfaces. As
shown in Fig. 1, the two surfaces are located at
z=+((1-at)”> =+h(t). Fora>0, the two
surfaces are squeezed till they reacht =1/ «,
and the two surfaces are disconnected inor < 0.
In this problem, the effects of viscous dissipation
and heat production are considered because
friction of shear in the flow is preserved. This
outcome is significant when the fluid flowing at
a high velocity or fluid is mainly viscous. This
specific characteristic happens at a high Eckert
number (>>1). The chemical reaction of the

transient reaction rate in mass transfer equations
is also considered. Furthermore, flow is assumed
symmetric.

According to these assumptions, the governing
equations for mass, momentum, energy, and
mass transfer in the unsteady two-dimensional
flow of a viscous fluid are:

u v _, (1)
x ay

2 2
6—u+u6—u+va—u=———p (au o u )
o vy  pox oy
N v v lop o N 3
—HtU—+V—=-—" (5 +—)
o4 ov oy poy X oy
o, o, ok O T b e, A 4
el ax+V3y pcp(ax )+ ((ax) +(0X ay))
., <, @7[3(520 & (%)
ot OX oy oy?

In these equations, U and V are the velocities in
Xand y directions, respectively, T is the

temperature, Cis the concentration, p is the
pressure, pis the fluid density,Vis the

kinematic  viscosity, kis the thermal
conductivity, C is the specific heat, Dis the
diffusion coefficient of the diffusing species, and
k(t)=k(L-oat)(see [16]) is the time-
dependent reaction rate. The relevant boundary
conditions are:

C=0, v=v,=dh/dt, T=T,C=C, aty=h(), 6
v=0uldy =0T lay =aC /oy =0 aty =0. 6
The following parameters are presented:
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Fig. 1. Geometry of problem.
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Replacing the above variables into Egs. (2 and 3)
and then disregarding the pressure gradient from
the resulting equations give:

fY-S(pfr+3f"+ ff"—ff")=0,  (g)

Using Eq. (7), the Egs. (4 and 5) transform to the
subsequent equations:

0" +Prs(16'—nd)+PrEc(f”+45°t%)=0,  (9)
¢"+ScS(f¢'—n¢')—Scyp=0, (10)

and boundary conditions are as follows:

f(0)=0, f"(0)=0, @'(0)=0,
#(0)=0, f@)=1, f'(1)=0, (11)
0(1)=¢(1)=1

where S, Pr, Ec, Ec, and j are the squeeze

number, the Prandtl number, the Eckert number,
the Schmidt number, and the chemical reaction
parameter, respectively. These parameters are
determined as:

2
2 c
s ptS gl X
2v k C,| 2(1-at)

P

(12)
SC=£ yzkiilz 5:l
D’ v’ x’

The main parameters for the evaluation of
hydrodynamic feature of the low are the Nusselt
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number, skin friction coefficient, and Sherwood
number, and they are calculated as follows:

[5u] [aTj [ac]
| — k| & k| =
¢ Moy Wy g Yy (13)

Py KTy DC,,

In terms of Eqg. (7), the followings can be
obtained:

12/x?(1-at)Re, C, =f "(2),
’Rex ::a/wx /ﬂ

JI=atNu =-6'(1), (14)
Ji—atsh =-¢'(1).

3. Details of ADM

By considering equation F u(t) = g(t), where
F denotes an overall nonlinear ordinary, the
linear terms are decomposed into L + R, where
L issimply invertible and R is the remained of
the linear operator. Thus, the equation can be
presented as [51]:

Lu+Nu+Ru=g (15)

where Nu specifies the nonlinear terms. By
resolving Eq. (15) for Lu,since L isinvertible,
it can be written as:

L'Lu=L"g-L"Ru—-L"Nu (16)

L is a twofold indefinite integral If L is a
second-order operator. By solving Eq. (16), Eq.
(17) is obtained:

u=A+Bt+L'g—L"Ru—L"Nu (17)

where A and B are factors of integration.
These factors are determined by the boundary or
initial conditions. ADM adopts the solution u,
and it could be extended into infinite series as:

u :iun (18)

n=0

Similarly, the Nu term will be written as bellows:
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Nu = i A, (19)
n=0

The singular Adomian polynomials are defined
by A,. By determining A, next element of U can

be calculated as:
un+1 = Lﬁlz An (20)
n=0

Lastly, after a few iterations and receiving
adequate correctness, the solution can be stated
by Eqg. (17). In this equation, the Adomian
polynomials could be produced by numerous
methods. Now, the subsequent recursive
formulation is applied:

)

As this technique does not alter linearization, the
generated solution is overally more accurate than
those attained by shortening the model of the
physical problem.

4. Implementation of ADM

Consistent with Eqg. (15), Egs. (8-10) can be
rewritten as follows:

Lf=S(nf"+3t"+ff"—ff"),
LO=-Prs(f0'-no')-PrEc(f”+45°f?), (22)
L =-Sc(f¢'~n¢')+Scr.

where the differential operator L, L, and L;are
d* d? d?
— L =—andL, =—,
d774 2 d772 L3 dnz
respectively. Assume the inverse of the operator
L (i=1,2,3) is exist and from O to it can be

integrated, i.e.:

given by L =

L= epmonanan, <o L[ (23)

Operating with L™ on Eq. (21), and
subsequently applying boundary condition on it,
the following equation is obtained:
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f(m)=10)+f'0)n+ f"(O)n—22+ f'"(O)%3+ L’l(Nlu),

0(7) = 0(0) + ') + L (N,u), (24)

#(n) = $(0) +¢'(0) 17 + L (Nyu).
where N.U are introduced as:

Nu=S(nf"+3f"+ ff"—ff"),

Nu=—Prs(f¢'-n@')-PrEc(f" +45°f"), (25)

N,u=—Sc( f¢'—ng¢')+Scyg.

ADM presented the following expression:

F0) =2 £ T =3 = fo + LA (N

00D = 2.0,0). 66 =Y. 0, =6, +L*(N)  (26)

B =2 40, 901) = 3 =+ LA(NW)

To limit the components of f; (f])ﬁm(n) and

¢ (1), the fy(1).6,(n) and o, (n) are
determined by using the boundary condition of
Eqg. (11):

6

fo(n)=a1%+am,

27
0,(1) =2, @7
¢0(77) =a,.
f,07) = = Sa, + ——S aZy’,
30 2520
1

0,(n) = —%Pr Ec 5%n°a] +
[—iPr Eca/ _Lprecs? aa jn“

12 3 2
—2PrEcs*ain’, ¢,(n) =%807a4f72- (28)

f..(1),6,,(n) and g, (17) form > 2are

defined in the similar method from Eq.
(25). Then, using

F0) =3 1,000 = X0, ) and
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()= 4.(7) following equations

m=0

are obtained:

© 6 1
f(n)zzfm<n):a1%+azn+%8n5a1+
m=0

1
L osazry
2520 > &7

< 1
0(n)=> 6,01 =2, ~35" EC &'n'al 29)
m=0

1 1
+| ——PrEca’-=PrEc 6’ aa, |n' -
( 12 h 3 & 2}77
2PrEcs®aln’ +..,

615(77)=Z.i:¢m(77)=a4+%Sc;/a4 n+....

As mentioned in Eq. (28), the precision of the
ADM solution rises by growing the number of
solution terms (m). To attain the final solution
for Eq. (28), a,(i=1,2,3,4) with a boundary
condition at 77=1 must be initially calculated.
E.g., constant values are attained as follow:

a, =-2.099635946,

a, =1.423330239),

a, =1.628275971, and
a, =0.6581746879

when:
S=Pr=Ec=Sc=y=1and §=0.1.

5. Results and discussion

After the governing equations are determined,
the ADM as a reliable technique is applied to
analyze hydrodynamic characteristics of viscous
squeezed fluid between parallel surfaces. This
method could predict reasonable results for the
nonlinear equations. Now, the different aspects
of the results are comprehensively studied. Fig.
2 displays errors for f(»),0(n), and ¢(n)
versus 77 when other significant parameters are
fixed. This plot also displays that extreme errors
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values occurs aty =o0.6and 77 = 1, respectively.

Fig. 3, Tables 1 and 2 compare results of the
numerical method with those of the ADM when
diverse values of significant parameter is
demonstrated.

The influence of the squeeze number on the
velocity profile is also revealed in Fig. 4. One of
the main crucial parameters in this problem is
sgqueeze number. It is significant to mention that

the squeeze number (S)pronounces the

displacement of the surfaces (S >0belongs to
the plates moving apart, while S <0 belongs to
the surfaces moving together (the so-called
squeezing flow)). As the surfaces move apart,
velocity rises with growth in the squeeze number
when 7 >0.5 | while it declines when7 <0.5.

Reverse patterns are detected when the surfaces
close together. Consistent with Eq. (14), f"(2)

presents the skin friction coefficient. As
perceived from Fig. 4, skin friction coefficient
declines as the squeeze number intensifies.
According to the industrial viewpoint, the power
outflow elaborates in the production of motion
of surfaces, and it is diminished when S is
negative.

As explained in the text, there are significant
results that should also be investigated to reveal
the main effects of various parameters. Fig. 5
displays the outcome of the Prandtl number,
Eckert number and squeeze number on the
profile of temperature. It is found that increasing
the squeeze number can be associated with some
changes such as a decrease in the kinematic
viscosity, a rise in the spacing between the
surfaces, and a growth in the speed at which the
surfaces move.

The obtained results also show that when S<O0,
thermal boundary layer thickness intensifies as
the absolute degree of the squeeze number rises.
In addition, thermal boundary layer thickness
declines with the rise in|S|whenS >0. It is

apparent that the thickness of the temperature
boundary layer is relatively high when the
surfaces become close. It is also found that the
rise of squeeze number can be relevant to growth
in the distance between the surfaces, the
reduction of the kinematic viscosity, and an
increase in the velocity at which the surfaces
move.
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Fig. 2. Error for f(n),0(n) and ¢(n) versus 77
whens —Ec=1,6§=0.1,y =1,Sc=1and Pr =1.
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Table 1. Comparison between the numerical results and ADM solution for f(5),0(») and g(») Wwhen

$=05,Ec=02,6=0.1,y=1Sc=1and Pr =0.7 .

- fn) o(n) #(1)
NM ADM Error NM ADM Error NM ADM Error

0 0 0 0 1.097532 1.097524 0 0.653436 0.653437 0
0.1  0.145385 0.145385 2.43E-10 1.097465 1.097458 7.51E-06 0.656705 0.656705 6.8E-07
0.2 0.288260 0.288260 1.86E-09 1.097179 1.097172 7.51E-06 0.666529 0.666529 6.9E-07
0.3  0.426066 0.426066 2.83E-09 1.096409 1.096401 7.51E-06 0.682963 0.682964 7.07E-07
0.4  0.556143 0.556143 3.86E-09 1.094689 1.094682 7.51E-06 0.706108 0.706108 7.31E-07
05 0.675682 0.675682 4.56E-09 1.091321 1.091313 7.51E-06 0.736111 0.736112 7.62E-07
0.6 0.781671 0.781671 4.54E-09 1.085316 1.085308 7.49E-06 0.773188 0.773189 7.99E-07
0.7 0.870846 0.870846 4.05E-09 1.075322 1.075315 7.41E-06 0.817636 0.817637 8.37E-07
0.8 0.939640 0.939640 3.53E-09 1.059519 1.059512 7.04E-06 0.869860 0.869860 8.5E-07
0.9 0.984134 0.984134 1.61E-09 1.035483 1.035478 5.49E-06 0.930404 0.930405 7.18E-07

1 1 1 0 1 1 0 1 1 0

Table 2. Comparison between the numerical results and ADM solution for f(;),0(7) and g() when

S=1Ec=16=01y=1Sc=land Pr=1.

- fn) o(n) #(1)
NM ADM Error NM ADM Error NM ADM Error

0 0 0 0 1628962  1.628276 0.000686 0.658171 0.658175 3.33E-06
0.1  0.141982 0.141982 2.67245E-08  1.628521 1.627835 0.000686 0.661463 0.661466 3.35E-06
0.2 0.281844 0.281844 5.16693E-08 1.626762  1.626077 0.000686 0.671342 0.671345 3.4E-06
0.3 0417380 0.417380 7.25832E-08  1.622311 1.621625 0.000686 0.687829 0.687832 3.48E-06
0.4  0.546214 0.546214 8.87184E-08 1.612646  1.611960 0.000686 0.710964 0.710968 3.6E-06
0.5 0.665708 0.665708 9.81879E-08  1.593714 1.593028 0.000686 0.740827 0.740831 3.75E-06
0.6  0.772872 0.772872 9.85931E-08 1559320  1.558635 0.000685 0.777554 0.777558 3.93E-06
0.7  0.864254 0.864254 8.72818E-08  1.500179 1499501 0.000678 0.821372 0.821376 4.12E-06
0.8  0.935839 0.935839 6.25974E-08  1.402502  1.401857 0.000645 0.87264 0.872644 4.21E-06
09 0982926 0.982926 2.58639E-08  1.245862 1.245355 0.000507 0.931908 0.931911 3.61E-06

1 1 1 0 1 1 0 1 1 0

Besides, the thickness of the thermal boundary
layer decreases when the Prandtl number
intensifies. In low Prandtl numberS(pr <<1),

the substance is liquid, and thermal diffusivity is
high while viscosity is low. On the other side,
when the Prandtl number(pr >>1) is high, the

substance similar to high-viscosity oils. The
existence of viscous dissipation effects
meaningfully raises the temperature. The
influence of the Eckert number on the thickness

of thermal boundary layer is close to the Prandtl
number.

In order to analyze the heat transfer in this
problem, the Nusselt number as the main non-
dimensional number should be investigated. Fig.
6 compares the Nusselt number profile for
different values of the squeeze number, Eckert
number, and Prandtl number.

As depicted in Fig. 6, the wvariation of
temperature gradient in the vicinity of the wall
significantly varies as the Prandtl number
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changes. In addition, the effect of squeeze
number pronounces more as the Prandtl number
is raised. As shown in the plot, the effect of
squeeze number is not noticeable in low Prandtl
number. Meanwhile, the effect of the Eckert
number is also significant on the results. In
contradict to the effect of the Prandtl number, the
effect of the squeeze number is not substantial as
the squeeze number increases.

In order to evaluate real-time momentum and
mass diffusion convection procedures, the
Schmidt number (Sc), as the ratio of momentum
diffusivity (kinematic viscosity) and mass
diffusivity is analyzed. This non-dimensional
number clearly characterizes fluid features.

Fig. 7 displays the impact of chemical reaction
parameter and the Schmidt number on the
concentration profiles. When Sc >1, growing
Schmidt number reduces the concentration in the
centerline but reverse characteristic is detected

whenSc <1. It is worthy to note thaty >0
signifies the destructive chemical reaction and
y <0exemplifies the generative chemical

reaction. Besides, concentration reduces as
destructive chemical reaction parameter is raised
while it increases with increasing of chemical
reaction parameter.

Moreover, the fragile molecular diffusivity and
the stripper boundary layer thickness are the
main reasons for the slow rise of Sc (Fig. 8).
Consequently, the Sherwood number rises with
the growth of the Schmidt number. Obtained
results also show that the impact of chemical
reaction parameter on the Sherwood number is
the same as the Schmidt number.
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Fig. 7. Effects of Schmidt number and chemical
reaction parameter on concentration profiles when (a)
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Fig. 8. Effects of the squeeze number, Schmidt
number and chemical reaction parameter on the
Sherwood number when (a) 7=1.;(b) Sc=1.

6. Conclusions
In this research, ADM is used to study and

analyze mass and heat transfer of the unsteady
squeezing flow through parallel surfaces. A

Analytical study of . . .

Vol. 11, No. 1

comprehensive  comparison  between the
obtained results with those of the numerical
method (4" order Runge-Kutta technique) is
done, and it is found that there is a good
agreement. The findings confirm that the Nusselt
number directly varies with change of the Eckert
number and the Prandtl number, but it has an
opposite relationship with the squeeze number.
Furthermore, the obtained results reveal that the
chemical reaction parameter and the Schmidt
number are raised when the Sherwood number
increases. However, the Sherwood number
declines as the squeeze number increases.
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